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Abstract

In this paper we propose a new Sieve-based Locally Weighted Conditional Empirical
Likelihood (SLWCEL) estimator for models of conditional moment restrictions containing
finite dimensional unknown parameters ¢ and infinite dimensional unknown functions
h. The SLWCEL is a one-step information-theoretic alternative to the Sieve Minimum
Distance estimator analyzed by Ai and Chen (2003). We approximate h with a sieve
and estimate both # and h simultaneously conditional on exogenous regressors. Thus,
the estimator permits dependence of h on endogenous regressors and 6. We establish
consistency and convergence rates for the estimator and asymptotic normality for its
parametric component of §. The SLWCEL generalizes in two ways the Conditional
Empirical Likelihood (CEL) of Kitamura, Tripathi and Ahn (2004). First, we construct
the CEL’s dual global MD-objective function with a new weighting scheme that adapts
to local inhomogeneities in the data. Second, we extend the resulting new estimator
into the semiparametric environment defined by the presence of h. We show that the
corresponding estimator of 6 exhibits better finite-sample properties than found in the
previous literature.
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1 Introduction

Moment restrictions frequently provide the basis for estimation and inference in economic prob-
lems. A general framework for analyzing economic data (Y, X) is to postulate conditional moment
restrictions of the form

Elg(Z,a0)[X] =0 (1)

where Z = (Y', X.)", Y is a vector of endogenous variables, X is a vector of conditioning variables
(instruments), X, is a subset of X, g(-) is a vector of functions known up a parameter «, and
Fy|x is assumed unknown. The parameters of interest ey = (65, h())’ contain a vector of finite
dimensional unknown parameters 6 and a vector of infinite dimensional unknown functions hg(:) =
(ho1(+), ..., hog(+))". The inclusion of hg renders the condition (1) semiparametric, encompassing many
important economic models. It includes for example the partially linear regression g (Z,«ag) =
Y — X160 — ho(X2) analyzed by Robinson (1988) and the index regression g (Z, ag) =Y — ho(X'6))
studied by Powell et al. (1989) and Ichimura (1993).

Recently, Kitamura, Tripathi and Ahn (2004) analyzed the Conditional Empirical Likelihood
(CEL)! based on a parametric counterpart of (1) (with 6 only) that was shown to exhibit finite-
sample properties superior to the Generalized Method of Moments. In this paper we first suggest
a new Locally Weighted CEL (LWCEL) that fundamentally changes the form of CEL and further
improves on it in terms of finite-sample properties. Then we extend the LWCEL to the semipara-
metric environment of model (1) proposing new Sieve-based Locally Weighted Conditional Empirical
Likelihood (SLWCEL) estimator. The SLWCEL can be viewed as a one-step information-theoretic
alternative to the Sieve Minimum Distance (SMD) estimator analyzed by Ai and Chen (2003). In
the remainder of the introduction we will elaborate on the heuristic origins of both estimators, and

further analysis will follow thereafter.

1.1 Conditional Moments Based on 6,

Without the unknown functions kg, model (1) becomes the parametric model of conditional moment
restrictions

Elg(Z,00)|X]=0 (2)

Typically, faced with the model (2) for estimation of 6y, researchers would pick an arbitrary matrix-
valued function a(X) and estimate the unconditional moment model E [a(X)g (Z, 6p)] = 0 implied by
(2) with an estimator such as the Generalized Method of Moments (GMM) (see e.g. Kitamura, 2006,

LA note on terminology: CEL is called “smoothed” and “sieve” empirical likelihood in KTA and Zhang and Gijbels
(2003), respectively. Other types of smoothing have been introduced by Otsu (2003a) on moment restrictions in the
quantile regression setting and hence KTA’s original method is referred to as "conditional" empirical likelihood to
avoid confusion. The CEL terminology was also adopted in Kitamura (2006).



p 26 for a discussion). This procedure is used under the presumption that the chosen instrument a(X)
identifies 6, which may not be true even if 6 is identified in the conditional model (2) (Dominguez and
Lobato, 2004). Moreover, the conversion to unconditional moments results in a loss of efficiency with
respect to the information contained in (2). Chamberlain (1987) showed that such loss can be avoided
by using the optimal IV estimator a*(X) = D'(X)V ~}(X) where D(X) = E[Vyg(Z,6p)|X] and
V(X) = E[g(Z,00) g(Z,00)" | X]. In practice, a*(X) can be estimated with a two-step procedure
(Robinson, 1987; Newey, 1993). First an inefficient preliminary estimator 0 for 0y is obtained and
the unknown functions D(X) and V(X) are estimated via a nonparametric regression of Vgg(Z,0)
and g(Z,0)g(Z,0) on X. Second, the estimate of a*(X) is constructed with the estimates of D(X)
and V(X) from the first step. However, as noted by Dominguez and Lobato (2004), the resulting
moment condition E [a*(X)g (Z,00)] = 0 may fail to identify 6 while 6 is identified under the original
model (2). Moreover, satisfactory implementation of the nonparametric regression may require large
samples thereby affecting the finite-sample performance of the feasible estimator of a*(X).

The methods typically employed for estimation of the unconditional model E [a(X)g (Z,6,)] = 0
have also been subject to criticism. While the optimally-weighted two-step GMM (Hansen, 1982) is
first-order asymptotically efficient, its finite sample properties have been reported as relatively poor.
For example, a simulation study by Altonji and Segal (1996) documented a substantial small-sample
bias of GMM when used to estimate covariance models. Other Monte Carlo experiments have shown
that tests based on GMM often have true levels that differ greatly from their nominal levels when
asymptotic critical values are used (Hall and Horowitz, 1996). Indeed, it has been widely recognized
that the first-order asymptotic distribution of the GMM estimator provides a poor approximation
to its finite-sample distribution (Ramalho, 2005).

A number of alternative estimators have been suggested to overcome this problem: Empirical
Likelihood (EL) (Owen, 1988; Qin and Lawless, 1994; Imbens, 1997), the Euclidean Likelihood (EuL)
corresponding to the Continuous Updating Estimator (CUE) (Hansen et al., 1996) the Exponential
Tilting Estimator (ET) (Kitamura and Stutzer, 1997; Imbens et al., 1998), and variations on these
such as the Exponentially Tilted Empirical Likelihood (ETEL) (Schennach, 2006). The EL, EuL and
ET share some common properties and can be derived from a common model basis for estimation.
Thus, they and can be viewed as members of broader classes of estimators such as the Generalized
Empirical Likelihood (GEL) estimators (Smith, 1997; Newey and Smith, 2004) and the Generalized
Minimum Contrast (GMC) estimators (Bickel et al., 1998). Recently, Kitamura (2006) showed that
for unconditional moment restriction models, the GEL class is essentially equivalent to the GMC
class even if the GEL are derived somewhat differently from the GMC. Both GEL and GMC lead
to the same saddle-point optimization problem yielding the same form the individual estimators.

The GEL/GMC estimators circumvent the need for estimating a weight matrix in the two-step

GMM procedure by directly minimizing an information-theory-based concept of closeness between



the estimated distribution and the empirical distribution. A growing body of Monte Carlo evidence
has revealed favorable finite-sample properties of the GEL/GMC estimators compared to GMM (see
e.g. Ramalho, 2005, and references therein).

Recently, Newey and Smith (2004) showed analytically that while GMM and GEL share the
same first-order asymptotic properties, their higher-order properties are different. Specifically, while
the asymptotic bias of GMM often grows with the number of moment restrictions, the relatively
smaller bias of EL does not. Moreover, after EL is bias corrected (using probabilities obtained from
EL) it is higher-order efficient relative to other bias-corrected estimators.?

It is worth emphasizing that the GMM and GEL estimators mentioned so far are all based on
unconditional moment restrictions burdened by the potential pitfalls described above. In addressing
this problem, Kitamura, Tripathi, and Ahn (2004) (henceforth KTA) recently developed a Condi-
tional Empirical Likelihood (CEL) estimator that makes efficient use of the information contained
in (2). Their one-step estimator achieves the semiparametric efficiency bound without explicitly
estimating the optimal instruments. Similar analysis has been performed by Antoine, Bonnal, and
Renault (2006a) (henceforth ABR) for the case of Conditional Euclidean Likelihood® and Smith
(2003, 2006) for the Cressie-Read family of estimators.

As the first contribution of this paper, we propose a new form of the CEL estimator for models
of conditional moment restrictions (2). Our estimator, the Locally Weighted Conditional Empir-
ical Likelihood (LWCEL), extends the one proposed by KTA. In particular, the LWCEL utilizes
information about local inhomogeneities in the data that has not been previously exploited. Conse-
quently, the new Locally Weighted CEL estimator (LWCEL) takes on a new form that differs from
the currently available CEL format.

Moreover, using the GMC information-theoretic framework we show that in constructing the
estimators for the conditional moment restrictions (2) previous literature implicitly use an arbitrary
uniform weighting scheme. This leads to minimizing a discrepancy from a probability measure that
is different from the one under which the data was distributed. The reason for this phenomenon is
that the previously analyzed estimators for (2) are based on local kernel smoothing of the uncondi-
tional version of (2). In contrast, we consider an information-theoretic dual locally weighted GMC
optimization problem built directly on (2) that minimizes a discrepancy from a probability measure
according to which the data was distributed.

In a Monte Carlo study we show that the LWCEL estimator exhibits better finite-sample proper-
ties than found in the previous literature. However, additional complications arise in the asymptotic

analysis due to a newly introduced weighting term. An extension of LWCEL to a more generic es-

2 Accordingly, the initial focus of this paper lies in EL as opposed to any other member of the GEL family of
estimators.

3ABR show that the Euclidean empirical likelihood estimator coincides with the continuously updated GMM
(CUE-GMM) as first proposed by Hansen et al. (1996).



timation form is currently subject to our research. Assessment of analytical higher-order properties

along the lines of Newey and Smith (2004) remains beyond the scope of this paper.

1.2 Conditional Moments Based on (6, ho)

A semiparametric extension of (2) to model (1) is unquestionably desirable because economic the-
ories seldom produce exact functional forms, and misspecifications in functional forms may lead to
inconsistent parameter estimates. By specifying the model partially (i.e. including hg as part of
the unknown parameters), the inconsistency problem can be alleviated. In general, semiparametric
literature related to the model (1) has been growing rapidly (see e.g. Powell, 1994; Pagan and Ullah,
1999, for reviews). Most of the available results are derived using a plug-in procedure: first hg is
estimated nonparametrically by T and then 0o is estimated using a parametric method (e.g. GMM
or GEL) with hg replaced by h. However, such plug-in estimators are not capable of handling models
where the unknown functions hy depend on the endogenous variables Y, because in such models 6
affects hg as well. Thus, in models where hy depends on an endogenous regressor, hy and 6y need
to be estimated simultaneously. There are very few results concerning simultaneous estimators.
Earlier applications include a semiparametric censored regression estimator (Duncan, 1986) and a
semi-nonparametric maximum likelihood estimator (Gallant and Nychka, 1987).

However, a general estimation method for the model (1) that permits dependence of hg on Y
and 6y was not well analyzed until a recent work by Ai and Chen (2003). These authors proposed a
Sieve Minimum Distance (SMD) estimator of ay under (1), based on identification and consistency
conditions derived by Newey and Powell (2003). Subsequent applications of the SMD estimator
include Chen and Ludvigson (2006) in a habit-based asset pricing model (with unknown functional
form of the habit) testing various hypotheses on stock return data, Blundell, Chen and Kristensen
(2006) in a dynamic optimization model describing the allocation of total non-durable consumption
expenditure, and Ai et al. (2006) investigating co-movement of commodity prices.

The first analysis that ventured into the realm of GEL-type estimators subject to conditional
moment restrictions containing unknown functions is due to Otsu (2003b).* His shrinkage-type
estimator is based on a penalized empirical log-likelihood ratio (PELR) which utilizes a penalty
function J(h) confining the minimization problem to a parameter space specified by the researcher.
Usually, J(h) is used to control some physical plausibility of h such as roughness of h. Otsu’s (2003b)
penalized likelihood method differs from sieve analysis and hence his treatment of asymptotics differs

from ours.?

4Up to date, the author has not been able to obtain a full copy of this paper. Only a google-cached html version
containing parts of the paper’s text is publicly available.

5In the seminal paper by Shen (1997), penalized likelihood and the method of sieves are treated as two separate
concepts. To achieve asymptotic normality, Otsu extends Theorem 2 of Shen (1997), whereas we extend Theorem 1
of Shen (1997) which is a separate result derived under different conditions from the former.



Otsu (2003b) suggests (in Remark 2.2) that it is also possible to use a deterministic sieve ap-
proximations, instead of the penalty function approach, resulting in a deterministic sieve empirical
likelihood estimator (DSELE) that would also be, under suitable conditions, [first-order] asymptoti-
cally equivalent to the SMD of Ai and Chen (2003). Similar conjecture has been raised in Nishiyama
et al. (2005) who noted the lack of theoretical justification for such procedure. Chen (2005, footnote
39) made the same type of conjecture in relation to the conditional parametric Euclidean empirical
likelihood estimator of Antoine et al. (2006b). However, despite calls for a theoretical justification
of such procedures, no previous paper has performed the necessary theoretical analysis. Yet, in
analogy to the parametric literature described above, developing a one-step simultaneous GEL-type
sieve alternative to the two-step simultaneous SMD in the semiparametric case can lead to a similar
type of improvement in terms of bias and higher-order efficiency and is therefore of great theoretical
and practical interest.

As the second contribution of this paper, we extend the LWCEL estimator to the semiparametric
environment defined by (1). We approximate h with a sieve and estimate 6y and hg simultaneously
with LWCEL. We establish consistency of the resulting one-step estimator and asymptotic normality
for its parametric component of §. Our LWCEL under (1) can be viewed as a direct alternative to
the SMD estimators. A Monte Carlo study comparing small sample properties of LWCEL with SMD
is planned to be included in future updates of this paper. Analytical comparison of higher-order
properties remains beyond the scope of this paper.

All of the simultaneous estimators mentioned above are based on the method of sieves (Grenan-
der, 1981; Chen, 2005) where hg is estimated over a compact subspace that is dense in the full
parameter space as sample size increases. This feature of sieves conveniently simplifies the infinite-
dimensional model hg to its finite-dimensional counterpart suitable for estimation. Here we also
adhere to the sieve methodology. However, the currently available relevant general theory papers
dealing with sieve M-estimation (Wong and Severini, 1991; Shen and Wong, 1994; Shen, 1997; Chen
and Shen, 1998) consider only one set of exogenous variables without endogenous regressors and
hence we can not apply these results directly in our case. Therefore, in the asymptotic analysis we
combine them with several results of Ai and Chen (2003) and our own new results necessitated by
the specific nature of SLWCEL under (1). In particular, among other issues we derive an extension
of Shen’s (1997) theorem on asymptotic normality of general simultaneous sieve estimators for the
case of endogenous regressors under strong conditions and then apply it to the SLWCEL case under
weak primitive conditions.

The rest of the paper is organized as follows. In Section 2 we develop the new LWCEL estimator
and its dual MD counterpart for conditional moment restrictions (2) containing a finite dimensional
parameter § € © C R% and contrast the LWCEL’s finite sample properties to KTA’s CEL. Section 3

extends the LWCEL to the semiparametric environment of model (1) containing both 6 and a vector



of infinite dimensional unknown functions h(-) in a = (6, h')". In Section 4 we derive consistency of
the Sieve-based LWCEL a;,, under a general metric. In Section 5 we show that &, converges to ayg

—1/4 under the Fisher metric, which is a sufficient rate result for asymptotic normality

at the rate n
of SLWCEL’s parametric component gn derived in Section 6. Section 7 presents the results of a
small-scale pilot Monte Carlo simulation study and shows favorable performance of the LWCEL
estimator §n compared to KTA’s CEL. Section 8 concludes. All technical proofs are presented in

the Appendices.

2 The LWCEL Estimator

2.1 Existing Methods
2.1.1 Information-theoretic Approaches to Estimation

We will now develop some intuition useful for subsequent analysis by briefly introducing the heuris-
tic background behind GMM estimation and information-theoretic alternatives such as empirical
likelihood. In general terms, suppose that theory is represented by the unconditional prediction
Eqlg(X,00)] = 0. GMM-type estimators are defined by setting the sample moments as close as
possible to the zero vector of population moments fixed by the probability measure Q.

In contrast, the information-theoretic approach focuses on a change of measure d@/dIl which
enables 0 # 0 to satisfy the transformed condition Ey [g (X, 6)] = 0. The estimator of 6y then sets
the probability measure II as close as possible to (). Such approach thus uses closeness of probability
measures, rather than moments, to estimate 6.

More specifically, define by P(6) the set of probability measures II that satisfy a given condition,
such as Er[g(X,0)] = 0. In order to find the most suitable II for each § € ©, the information-

theoretic approach suggests the use of the convex optimization problem

Hrergl(le)D(H,Q) st. Enlg(Z,0)]=0 (3)

where D (I, Q) is a measure of divergence between II and Q,

pQ) = [ (jg) 1Q (4)

(Csiszar, 1967). For a finite sample distributed according to @, the resulting estimator of 6y mini-
mizes the finite-sample counterpart of (3) over ©. In practice, this involves "re-weighting" the sample
data to fit the given restriction. The information-theoretic approach has a long history in mathe-
matical statistics. Its theoretical basis includes maximum entropy principle (Jaynes, 1957) and the

principle of minimum discrimination information (Kullback and Leibler, 1951), (Kullback, 1997).



2.1.2 TUnconditional Moment Restrictions

A substantial body of literature has been devoted to estimation under the unconditional moment
restriction

Elg(X,60)] =0 ()

In contrast to the conditional case (2), under the unconditional framework all data is treated as
exogenous which results in significant simplifications in subsequent analysis. Most notably, Qin and
Lawless (1994), Hansen et al. (1996), Kitamura and Stutzer (1997), Imbens et al. (1998), Newey
and Smith (2004), and Schennach (2006) belong to this category. In a comprehensive manuscript,
Kitamura (2006) elaborates on the use of duality theory from convex analysis in construction of
a general class of unconditional GMC estimators. This elegant framework enables one to derive a
computationally friendly saddle-point GMC estimator from a dual optimization problem directly
related to a primal unfeasible optimization problem that is based on an information-theoretic pop-
ulation specification. This approach, which we build on herein, is tantamount to a generic version

of the Lagrange multiplier derivation of GEL estimators utilized in earlier literature.

2.1.3 Conditional Moment Restrictions

Estimation techniques based directly on the conditional moment restrictions (2) have so far been
analyzed for special cases of the finite-sample conditional counterpart of the divergence measure (4):

the Conditional Empirical Likelihood (CEL) with

(i) = (o)

by KTA, the Conditional Euclidean Likelihood with

-3 G

by ABR, and the Cressie-Read parametric family with

i (Z((ij))> B 7(v2+ 1) <Z((§j;>v B 1]

where v € R by Smith (2006). These estimators are all derived from local kernel smoothing based

on the unconditional model (5).



2.2 Alternative Estimation Methods for Conditional Moments

The theoretical foundations of our new class of estimators extend the dual GMC approach of Kita-
mura (2006) to account specifically for the conditional moment restrictions. In contrast to a single
GMC optimization problem utilized in Kitamura (2006) suitable for the unconditional moments
(5), though, we consider a continuum of GMC optimization problems - one at each X. The result-
ing estimator then minimizes the expected value of the primal or dual GMC value functions, the

expectation being taken with respect to the marginal distribution of the exogenous variables X.

2.2.1 Stochastic Environment

Suppose that the observations {(z;,y;) : ¢ = 1,...,n} are drawn independently from the joint dis-
tribution Q(z,y) with support X x ) where X is a compact subset of R9X and ) is a subset of
R? . Suppose that the unknown distribution Q(x,%) satisfies the conditional moment restrictions
given by (2), where g : Z x © — R% is a known mapping, up to an unknown vector of parameters
0p€©,and Z = (Y, X.) €Y x Xz = Z C R¥ where Xz C X. The restriction (2) can then be
reformulated as

/ 9(Z,60) dQ(y|z) = 0

where Q(y|z) is the "true" conditional distribution of Y given X.
Denote by w(y|x), q(y|z), m(z,y), ¢(z,y), m(z), ¢(x) the Radon-Nikodym derivatives of the
probability measures (y|z), Q(y|z), U(x,y), Q(z,y), II(z), Q(x) with respect to the Lebesgue

measure m(-), respectively.

2.2.2 Information-theoretic GMC Model

Let My denote the set of all probability measures on R% and let

P(X;0) = {H(y|:n) € My : /g(Z,H) dll(ylz) =0; X € X}

Define the set of all probability densities that are compatible with the conditional moment restriction

(2) by
P(X) = UscoP(X;0) (6)

The set P(X) indexed by X represents a statistical model that is correctly specified if ¢(y|x) € P(X).

Consider the measure of conditional divergence’

D(Myle). Qi) = [ 6 (flgg'%) 4Q(yl) ()

6This conditional measure of divergence is a natural extension of the conditional discrepancy measure formulated
by Shannon (1948) for the special case of conditional entropy with ¢(z) = xlog(x).




where, ¢ is a convex function and II(y|x) is absolutely continuous with respect to Q(y|x).
For given € © and X € X, define the conditional contrast function p (6, dQ(y|x)) as the infimum

of the discrepancy (7) between II(y|z) and Q(y|z)

p(0,dQ(y|r)) = nf D (Il(y|z), Qylz)) (8)

i
(y|z)eP(X)

Assuming model identification conditions are satisfied, for 6 # 6y, w(y|z) # q(y|z) a.s. Since by
definition D (-, Q(y|z)) attains its minimum at Q(y|z), it follows from (8) and (6) that the true

population parameter value €y uniquely solves the population GMC optimization problem

0o = arg inf Bq) [p(0,dQ(ylz)) | X] 9)

Taking the expectation with respect to the probability measure Q(z) in (9) according to which the
exogenous X were distributed is the key to our formulation of the population GMC optimization
problem. As Lemma 1 in the Appendix shows, under this specification the expectation of the
conditional contrast function with respect to Q(x) minimizes the divergence between the two joint

distributions II(z, y) and Q(z,y).

2.2.3 Dual Formulation

To facilitate a computationally feasible estimator of 0, it is beneficial to express the GMC optimiza-

tion problem (9) in terms of the arguments 6 and X only, stating explicitly the constraints. Define

p(y|lr) = 358"3 € Ry and p(z,y) = Zg%izg € R,. For a given § € © and X € X, using p(y|z) in

(7), the conditional contrast function (8) can be expressed as a value function

v(0,X)= inf / 6 (p(yl2)) dQylz) s.t. / 9(Z,0) p(yl)dQ(ylz) = 0, / pl)dQlz) =1 (10)

p(ylz)ER Y

Using results from convex analysis (see e.g. Luenberger, 1969; Borwein and Lewis, 2006), the nu-

merically unfeasible primal problem (10) has an equivalent expression as a dual problem

V(X0 = max [u<x> - [ 6 0 + 23X 9 (2,0) d@(yu)}

AMX)ERY u(X)ER

where ¢*(+) is the convex conjugate (or Legendre transformation) of ¢(+). This is a finite-dimensional
unconstrained convex maximization problem that will further provide the basis for numerical opti-
mization. By Fenchel duality,

v(X;0) =v*(X;0) (11)

It is beneficial for the construction of the estimator in the next section to express the value-
function formulation (10) of the GMC optimization problem (9) in terms of the Lebesgue measure

Eow 0050 = [ aten)s (T8 ) ama.y) st [ wlo)s .0y amtula) =0, [ tul)am@is) =1 (12



Using (11), (12) is equivalent to

B 0" (X;0)] =  max [/ g (X )dm(z) — / 4w, 1)6" (u(X) + XX)'g(Z,0) dm(z,y)|  (13)

AeR% peR
A feasible estimator formulated in the next section minimizes the unconstrained finite-dimensional

optimization problem (13) over the parameter space ©.

2.2.4 The Estimator

Given a sample {(z;,y;) : ¢ = 1,...,n} distributed according to Q(z,y), the population criteria
described above provide a basis for statistical inference wherein we replace the unknown probability
measures Q(z,y) and Q(y|z) with their empirical counterparts Q(x;,y;) and Q(y;|z;), respectively.
The densities ¢(x, y) and g(y|x) need to be estimated nonparametrically as probability mass functions
q(x;,y;) and ¢(y;|xz;) with support on the data. Numerous methods have been suggested in the
literature to obtain such estimates with various desirable properties using e.g. kernels, series or
nearest neighbors to name just a few (see e.g. Pagan and Ullah, 1999, and references therein).

A sample version of (12) is

W60 = Equ) b(X;0)]
n n :1;7( n n
i=1 j=1 y |m’ j=1 j=1

and of its dual formulation (13)

7(0) = Equ[v"(X:0)]

max Z (@) = > Y a@s, )8 () + Mw:)'g (25, 0)) (15)
i=1

AER%9 L €R

3

i=1 j=1

This leads to the Locally Weighted Conditional GMC estimator for 6

0 = arg 5%1(51 v(0) (16)

This estimator corresponds to the conditional locally weighted forms of the "Minimum Discrepancy
Statistic" of Corcoran (1998) and the "Minimum Distance Estimator" of Newey and Smith (2004).

Its computationally convenient dual formulation based on (15) is expressed as

0 = arg rerélgv () (17)

10



2.2.5 Localization Features

For a sample {(y;,z;) : ¢ = 1, ...,n} estimation of ¢(y|z) and ¢(z,y) amounts to the use of localization
methods (Tibshirani and Hastie, 1987). In the stream of literature most relevant to this paper,
localization schemes have been used in the conditional moment context in LeBlanc and Crowley
(1995), Zhang and Gijbels (2003), KTA for CEL, ABR for the EuL, and Smith (2003, 2005) for
GEL. Information on Q(y|z) is inferred from the nearby observations if we assume that Q(y|x) is
continuous with respect to X. In other words, in a neighborhood around z; we approximate Q(y|z)
by Q(y|z) = Q(y|z;). This implies that all the z; with z; lying in this neighborhood can be roughly
viewed as observations from Q(y|z;). Note that, unlike in the unconditional moment case (5) where
q(x;) = 1/n, now the ¢(z;,y;) and q(y;|x;) are not derived directly from observed data, since only
one realization of the random vector y; was actually observed at x;. Rather, these probability masses
are inferred from neighboring observations. The data-determined ¢(z;, y;) and g(y;|x;) are then used

as a benchmark in the value function of the GMC optimization problem in derivations of 0.

2.3 Locally Weighted Conditional Empirical Likelihood

Various choices for the discrepancy measure ¢(-) lead to various special cases of the Dual Locally
Weighted Conditional GMC estimator. Setting ¢(z) = — log(z) corresponds to Locally Weighted
Conditional Empirical Likelihood (LWCEL). The unfeasible GMC estimator of (9) becomes

)
I

arggneu@lv { ZZ q(zi,y;) log( ] 1) Zﬂ’ (yjlzi)g (25,0 :O,Zﬂ'(yj\xi):l (18)

Q(yjlajl) j=1 j=1

The convex conjugate of ¢(z) = —log(z) is ¢*(y) = —1 — log(—y). Using this expression in the

feasible dual formulation (17) we obtain

n n

ELWCEL = arg 5%18 *(0) = max [Zq (z:) — Z Z q(zi, y; log w(z;) — Mzi) g (25, 9))}

d
AERY ueR | i=1j=1

It is worth noting that on the population level, the LWCEL minimizes the discrepancy measure

o (S22 s

K(()())

D (Il(z, ), Q(z,y))

where K(Q(z,y),II(z,y)) is the Kullback-Leibler (KL) divergence between the joint probability
measures Q(z,y) and II(z,y) with Q(z,y) being the true probability measure according to which

11



the data are distributed. The /G\LWCEL then solves the minimization problem

inf inf K z,y), (z,
0€0 ww(z,y):m(z,y)E{My: XX} (Q”( y) ( y))

where @, (x,y) is the empirical measure and II(x,y) represents the moment conditions model.
Note that this estimator contains two important modifications in comparison to the Conditional

Empirical Likelihood (CEL) analyzed by KTA specified in our notation as

Ocpr = arg min max 0 alyli) log (1+ Aw:)'g (25, 6))

i=1 j=1
First, the weight of the logarithmic function in §CEL is q(y;|z;) as opposed to g(z;,y;) in 5LWCEL.
This is a consequence by taking simple summation of the local discrepancies at x; in derivation
of @C g1 as opposed to a weighted sum that would capture the relative importance of each local
discrepancy in the global objective function. Thus, in the population version of the GMC opti-
mization problem with E,, x)[v(X;0)] the ¢ minimizes D (II(y|z), U(X)Q(y|x)) as opposed to
D (Il(z,y), Q(x,y)) for 5LWCEL, where U(z) is the uniform probability measure over X. However,
Q(z,y) # U(z)q(y|z), almost surely. Second, Ocpy sets p(x;) = 1 which is an artefact of using
a specific kernel estimation method where individual weights sum up to 1. In general, however,
w(z;) # 1 as.
A closer look on the structure of the optimization problem behind @LWC gL reveals interesting
comparisons with the form of empirical likelihood established in the literature for unconditional

moment restrictions. Taking first-order conditions of the GMC Lagrangian

LM pm) = ZZ a(@i,y; 1n< D) ) Z”l Z (ylz)9 (2;,8)  (19)

(yjlzi)

=1 j=1 Jj=1
- Z (i) Z m(yjle:) — 1
i=1 j=1
corresponding to the GMC objective function (18) yields
1@ 85) _ Sy (2:0) + 7 , ¥irj (20)
7(yjlw:)
> Fylang (2,0) =0 , i (21)
j=1

12



Summing (20) over j and using (21) yields, for each ¢,

3

o(z;) = : q(@i, ;)
= X Y R(leg (2.0) +Ale) Y7y
L) (23)

Substituting (23) into (20) gives, for each ¢ and 7,

Z]\(xia y])

7(y;lei) = = = (24)
o(x;) + Mxz;)' g (zj, 9)
Substituting (24) into the Lagrangian (19), and using (21) and (22), yields
L(0,X) =) wi;ln =~ - (25)
i=1 j=1 o) + Mzi)'g (zj,H)

Then the Locally Weighted Conditional Empirical Likelihood estimator with the new weighting

scheme is defined as
b\LWCEL = arg %16354 L(0, \:) (26)
where X, solves”
n i y5)g (2:9)
—~/ o~ =
j=1 0 —+ )‘ig (Zj,e)

obtained from (21) and (24). As discussed above, in general o; # 1. The presence of o; is the
hallmark of LWCEL compared to the previous literature where, invariably, o; = 1.

The §LWCEL estimator defined in (26) is a special case of a corresponding estimator derived
under semiparametric conditional moment restrictions in the next Chapter. For this reason, we
will perform the asymptotic analysis pertaining to both estimators in the next chapter. The MD
estimator analyzed by Smith (2003, 2005) as well as the CEL estimator elaborated in KTA achieve
the semiparametric efficiency lower bound (see Chamberlain, 1987). The weighting introduced for
@Lwc gL in this paper postulates more flexible weights that improve on the fixed-bandwidth kernel
weights in finite samples in terms of MSE. We conclude that our new forms of the MD and CEL esti-
mators exhibit first-order asymptotic equivalence in terms of consistency and asymptotic normality
with the ones formulated in the previous literature, and hence also achieve the first-order asymptotic

semiparametric efficiency lower bound. However, our 01y cgr improves on its previously analyzed

"In line with KTA we adopt the notation A; as shorthand for X(xl,g) In the same spirit, we denote o(z;) with o
in the sequel. When necessary, we explicitly write the full form to ensure that our arguments are unambiguous.
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forms in terms of finite sample performance.
Given the general GMC setup above, the extension of the estimation procedure from LWCEL to
a more generic functional form of ¢ appears relatively straightforward and is currently subject to

our research.
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3 Semiparametric Conditional Moment Restrictions

In this Section we extend the LWCEL estimator (25) to the semiparametric environment defined
by (1). In doing so, we will use series estimation (see e.g. Newey, 1997) as a particular form of
linear sieves in both approximating h and determining the weights w;;. Series estimators are known
to contain functional bases that are superior in terms of MSE criteria to fixed-bandwidth kernel
estimators, especially in the presence of spatial inhomogeneities in the data (see e.g. Ramsey, 1999).
Silverman (1984) showed that series estimators with spline basis functions behave approximately
like the variable-bandwidth kernel estimator which improves on its fixed-bandwidth version in terms
of MSE by the virtue of local adaptation. Another advantage of working with the LWCEL estimator
based on series approximation is that truncation arguments in regions with small data density are

not required in contrast to kernel weights.

3.1 Sieve-based Conditional Empirical Likelihood

The environment setup parallels the one of Newey and Powell (2003) and Ai and Chen (2003).
Suppose that the observations {(Y;, X;) : i = 1,...,n} are drawn independently from the distribution
of (Y, X) with support V) x X', where ) is a subset of R?* and X is a compact subset of R%X. Suppose
that the unknown distribution of (Y, X) satisfies the semiparametric conditional moment restrictions
given by (1), where g : Z x A — R% is a known mapping, up to an unknown vector of parameters,
ap = (0,h)) € A=OxH,and Z = (Y, X)) € Y x Xz= Z CRY? where Xz C X. We assume that
© C R% is compact with non-empty interior and that H = H' x ... x H% is a space of continuous
functions. Since H is infinite-dimensional, in constructing a feasible estimator we follow the sieve
literature (Grenander, 1981; Chen, 2005) by replacing H with a sieve space H,= H} x ... x Hn
which is a computable and finite-dimensional compact parameter space that becomes dense in H as
1 increases.

Next, we introduce the series estimator used in the analysis (see Newey, 1997; Ai and Chen,
2003). For each [ =1,...,dy, and for a given ¢, let {po;(X), j = 1,2,...k,} denote a sequence of
known basis functions (power series, splines, wavelets, etc.) and let p*» (X) = (po1(X), ..., pox, (X))
Let further p*»(X) be a tensor-product linear sieve basis, which is a product of univariate sieves
over dx (see Ai and Chen, 2003, for details). Let P = (p*»(x1), ..., p*"(z,))’ be an (n x k,,) matrix.

Consider the model (1) and denote the conditional mean function

m(X,a) = FElg(Z a)|X]
~ [9(za)arx (27)
Let m(X,a) = (mi(X,a),...,maq,(X,a))’. A consistent nonparametric linear sieve estimator of
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my (X, @) is given by
(X, a) = p™ (X)'%

where h in « = (€', k')’ is restricted to the sieve space H,, and %; is an OLS estimate obtained by

regressing ¢; (Y, X., a) on pF(X),

R o= (P'P)'Pg(Za)

_ Z P () (P'P) ' g1 (2, 0) (28)

and hence

(s, o) Ezix[g1(Z,a)|X = z;]
= pr(m)'R

—1
= > p" () (P'P)" " (2)gi (2, )
j=1
= D wigi(z,0)
j=1
after substituting from (28), [ = {1,...,d,}. In the vector form
m(w;, a) = sz‘jg (2, )
j=1
The weights are given by

wij = pr () (P'P) " ph» (x5) (29)

and
n

g; = E wij

j=1

= > () (PP P ()
j=1

= {P(P'P) " pr ()

where i is a (n x 1)—vector of ones.

We now turn to the derivation of LWCEL under (1). The Lagrangian® for the local semipara-

8 As discussed above, omission of gij from the denominator of In (7;;/q;;) is inconsequential in the case of LWCEL.
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metric EL estimator is

n n n n

max g E wi;Inm;; st iy >0, T =1, g g (zj,an)my =0, fori,j=1,..,n
pij 4 ; ;
=1 j=1 Jj=1 Jj=1

where a, is « restricted to the sieve space A,,. Then,

Ry = —— 9
/. /
o; + )‘ig (Zjv an)

and for each «ay, € A,,, A; solves
n

Z Wi 9 (Zjaan) -0 (31)

=1 oi+ A;g (Zja an)

The Sieve-based Locally Weighted Conditional Empirical Likelihood (SLWCEL) evaluated at c, is
defined as

Lsrw n) = il i
sLwerL(an) E E W n{aﬂr)\; ( )}

i=1 j=1

where A; solves (31). The estimator of ag is defined as

Q, = arg Jnax Lsrwerrn(om) (32)

n n

Solving (32) is equivalent to solving

a, = arg max Gr(an) (33)

an€An

where
n

Gnlay,) = —%ZZwU— In{o; + Nig (z;, an) } (34)

i=1 j=1
Implementing our estimator is straightforward. One advantage of the sieve approach is that
once h € H is replaced by h,, € H,, the estimation problem effectively becomes a parametric one.
Commonly used statistical and econometric packages can then be used to compute the estimate.

From (31) it follows that

d

A; = arg max Z wi; In {o: + Py (Zj’ an)} (35)
pER =
j=1

This is a well-behaved optimization problem since the objective function is globally concave and
can be solved by a Newton-Raphson numerical procedure. The outer loop (33) can be carried out
using a numerical optimization procedure. For a relevant discussion of computational issues, see for

example Kitamura (2006, section 8.1).
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4 Consistency

In this section we present some asymptotic results for the smoothed empirical likelihood estimator
as defined in (32). The general approach follows closely the one developed in KTA. The following
definitions, adopted from Ai and Chen (2003), are introduced:

Definition 4.1 A real-valued measurable function g(Z,«) is Holder continuous in o € A if there
exist a constant & € (0,1] and a measurable function c3(Z) with E [c2(Z)?|X] bounded, such that
19(Z, 1) — g(Z,00)| < 2(Z) ||on — || for all Z € Z, a1, a5 € A.

The Holder space of smooth functions A7(X) of order 7 > 0 and the corresponding Holder ball
AY(X)={g € AT(X) : ||g]lp,5 < ¢ < oo} with radius ¢ are defined in Ai and Chen (2003), p. 1800.

(6]

Definition 4.2 A real-valued measurable function g(Z, ) satisfies an envelope condition over o € A
if there exists a measurable function ci(Z) with E {c1(Z)*} < oo such that |g(Z, )| < e1(Z) for all
Z € Z and a € A.

The following Assumptions are made to facilitate the analysis:

Assumption 4.1 For each oo # o there exists a set X, such that Pr{x € X,}, and E'[g (z, o) |z] #
0 for every x € X,.

Assumption 4.2 (i) The data {(Y;, X;)!_,} are i.i.d.; (ii)) X is compact with nonempty interior;
(iii) the density of X is bounded and bounded away from zero.

Assumption 4.3 (i) The smallest and the largest eigenvalues of E [p* (X)) x pF» (X)'] are bounded
and bounded away from zero for all ky,; (i) for any g (+) with E [g(X)Q] < 00, there exists p*n (X)'k
such that E [{g(X) — phn (X)/Ii}ﬂ = o(1).

Assumption 4.4 (i) There is a metric ||| such that A = © x H is compact under ||-||; (i) for any
a € A, there exists Il,a € A, = O x H,, such that |, — al = o(1).

Assumption 4.5 (i) E [|g (Z, a0)|? |X} is bounded; (i) g (Z,«) is Holder continuous in o € A.
Let k1, = dim(H,,) denote the number of unknown sieve parameters in h,, € H,,.
Assumption 4.6 kq, — 00, k,, — 00, kp/n — 0 and dgk,, > do + ki,,.

140

Assumption 4.7 E||z|| "¢ < oo for some o < o0.

Assumption 4.8 E {sup,c4 |9 (Z,a)||"} < oo for some m > 8.
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Assumption 4.1 is Assumption 3.1 in KTA that guarantees identification of 8. Assumptions 4.2—
4.6 are essentially the same conditions imposed in Newey and Powell (2003) and Ai and Chen (2003).
Assumption 4.2 rules out time series observations. Assumptions 4.3—4.6 are typical conditions im-
posed for series (or linear sieve) estimation of conditional mean functions. Assumption 4.4(i) restricts
the parameter space as well as the choice of the metric ||-||. It is a commonly imposed condition in
the semiparametric econometrics literature, and is satisfied when the infinite-dimensional parameter
space ‘H consists of bounded and smooth functions (see Gallant and Nychka, 1987). Assumption
4.4(ii) is the definition of a sieve space. Assumption 4.5 is typically imposed on the residual function
in the literature on parametric nonlinear estimation. Assumption 4.6 restricts the growth rate of
the number of basis functions in the series approximation. Assumption 4.7 is Assumption 3.4(ii) in
KTA, used in Lemma A.1. Assumption 4.8 is Assumption 3.2 in KTA used in Lemma AS.

The following Theorem provides a consistency result:
Theorem 4.1 Let the Assumptions 4.1-4.7 hold. Then ||a,, — agl| = 0,(1).

The proof is derived in the Appendix. The proof proceeds along the lines of KTA. However, the
fact that the sieve parameter space H,, grows dense in an infinite-dimensional space H now needs
to be addressed. The inclusion of ¢; in the LWCEL objective function compared to KTA’s CEL
also complicates matters. We achieve some simplifications arising from not having to make use of
truncation arguments for kernels. Since we are not dealing with kernels, unlike KTA we can not use
Lemma B.1 of Ai (1997) to determine uniform convergence rates. For this purpose, we specialize
Lemma A.1(A) of Ai and Chen (2003), derived for the combined space X x A, to the space X only,
with g (z;j, @) evaluated at a given fixed «. Since we do not have to account for growth restrictions
on the parameter space in this Lemma, we are able to obtain faster convergence rate Sln than Ai

and Chen (2003).

5 Convergence Rates

Theorem 4.1 established consistency of @, = (6,,, hy) under a general metric ||| constrained only
by Assumption 4.4(i). In order to ascertain asymptotic normality of /9\,,“ one typically needs that
Q, converge to g at a rate faster than n=/* (see e.g. Newey, 1994). As noted by Newey and
Powell (2003), for model (1) where the unknown hy can depend on endogenous variables Y, it is
generally difficult to obtain fast convergence rate under ||-||. Nonetheless, as demonstrated by Ai
and Chen (2003), in simultaneous estimation of (@L,ﬁn) it is sufficient to show fast convergence rate
of a,, = (gn,ﬁn) for only a special case of ||-|| to derive asymptotic normality of O Naturally, we
will also follow this approach. However, since the objective function of the problem analyzed in

Ai and Chen (2003) is different from ours, our metric also differs. While Ai and Chen (2003) used
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a quadratic form type metric, we perform the analysis under the Fisher metric ||-||» which is the
natural choice for a likelihood-based scenario.

Some additional notation is necessary to introduce the Fisher metric. The properties of A4 and
the notation for pathwise derivatives established in this paragraph borrows from Ai and Chen (2003).
Suppose the parameter space A is connected in the sense that for any two points a1, as € A there
exists a continuous path {a(t) : ¢ € [0,1]} in A such that a(0) = oy and a(l) = ag. Also, suppose
that A is convex at the true value «q in the sense that, for any o € A, (1 — t)ag + ta € for small
t > 0. Furthermore, suppose that for almost all Z, g(Z, (1 — t)ag + ta) is continuously differentiable

at t = 0. Denote the first pathwise derivative at the direction [ — ap] evaluated at ag by

dg(Za OLO)[OL*O[Q] = dg(Z7(]‘ —t)Oéo—l—tOé) as. 7
da dt ‘0
and for any a1, as € A denote
dg(Z, dg(Z, o dg(Z, o
g(da 0) [051 o OZQ] = g(da 0) [Oél . Oéo} o g(da 0) [OLQ — ap

dm(X, dg(Z,

%[al —ag] = FE { %[al — az] X} (36)
Furthermore, let

¢ (X,Z,a) = In{o, +N(X,a)g9(Z,a)} (37)
V(X,a) = Elp(X,Z,a)lX] (38)

where o, stands for o; evaluated at a generic X = z. For any a1, as € A the Fisher norm ||-|| » (see

e.g. Wong and Severini, 1991, p. 607) is defined” as
X] } (39)

Let V denote the closure of the linear span of A — {e,} under the metric ||-|| . Then (V,|-]|5) is

(4ol Zowly,, ]) (X, 2,00) o, _ g

- =,|FEFE
HOZ]_ a2HF { do do

a Hilbert space with the inner product

2
(v1,v2) p = |lv1 — V2| %

We will now show that our metric ||a1 — || is equivalent to a conditional version of the metric

9We use the inner product notation for the pathwise derivatives to explicitly account for the special case when
a=0cRb.
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used in Ai and Chen (2003). Let

s(X,Z,a) = N(a,X)g(Z,a)
d(p(X,Z,(lo)
X, Z = —
@ (X, Z,a) ds(X, Z, a)
_ 1
0. +s(X,Z,a)

where s(X, Z,a) and w (X, Z, ) is scalars. Note that from the conditional moment restriction (1),

under the expectation taken over Z conditional on X

A(X, a) = 0 (40)

which means that the constraints on Iy x imposed by (1) are satisfied with equality and the Lagrange
multiplier A(X, ag) takes on the value 0. This is also apparent from Lemma A.8. We have

]

B [ (dap (X, Z,a0) o — az})l do (X, Z, ap)

da do [on = az]
[ ds(X,Z "ds(X,Z
= E|w(X, Z a)? (w[al 7042]) w[‘” ~ ) X}
L o o

’ !
@ (X, Z,00)* (X(X, 00) 2520 oy — ] + g(Z,00) XGL00))" |
x (N(X,a0) 22Z:20) [0 — ag] + g(Z, a0) X EL0) )
A1+ Ay + Az + Ay (41)

= K

where
A= B[w(xZan? (L2, —m])'A(X, o)V (¥, 0) 2220 o, — ) x|
4y = B|w(X.2a0) (‘“ (X.00) 1, —ml)'mz, a0V (X, 00) 0E 0 o, o X}
4s = B 'w<x Ziao)* (2200, —a21)'x<x, 00)9(%,00 210D 0, ) x|
M= B|w(xza0? (B, —az])lg(Z 00)g'(2,00) 220D o, x|

Using (40) yields A; = Ay = A3 = 0. By the definition of \(X, a) in (35), A(X, «) is a function of
9(Z, ) which is a function of a.. Moreover, A(X, «) is a function of a only via g(Z, ). Hence, under
the expectation taken over Z conditional on X

d\X, a)
do

[ — ag] = [a1 — a2 (43)

In particular, under the expectation over Z conditional on X, A(X,«) is defined implicitly as a

function of g(Z, &) by the relation

F()‘ag) =F g((Z7 a)

os + N(X, @)g(Z,q)

x| ~o
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By the Implicit Function Theorem

dA\(X, a) _ OF (X, g9)/09(Z, &)
dg(Z, o) OF (A, 9)/ONX, a)
_ |l t N (X a)g(Z.0) ~ X (X, 0)g(Z, 0))/ (00 + XN (X, a)g(Z,0))"

|

= —0. (X, )" (44)

—9(Z,0)g"(Z, )/ (02 + N (X, @)g(Z, )
= 0. {E[g(Z,a)d(Z )| X]} "

Substituting (44) into (43) we obtain

A\, X, Z)
da

—1dg(Z7 Oé)

[ — ag] = —0,.5(X, @) o

[1 — ao] (45)

g

Substituting (45) into (42) yields

dg(Z7 Qg

da )[0‘1 - 042]>/ Wo(X, Z)—lw

Ay =02E | w (X, Z,a0)” ( o [ — a]

where

Wo(X,2) ' =3(X,a0) '9(Z, 0)g'(Z, 0)2(X, p) ~*
Using (40) in @ (X, Z, o) results in

dg(Za Oéo)

A4:E (dg(Z,Olo) -

do [011 - OQ]) WQ(X, Z)71

[ — az]

X] (46)

Substituting (46) into (42) and (39) yields

IIOélazllF\lE{E } (47)

The expression (47) can be viewed as a conditional version of the metric used in Ai and Chen

(dg(Z, ), a2]> wo(x, 2199 Z00) iy

do do

(2003). In particular, if @[al — ag] and ¢g(Z, o) are independent conditional on X, then (47)

(0%

/
reduces to \/E { (%a’%)[a1 — ag]) Y(X, ao)ﬁ%&ao) [aq — 042}} which is the metric used in Ai

and Chen (2003) with the efficient weighting matrix.
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Note that by (40)

P %@Z’%)[m_m] X} = N(X,a0)E L(dzc’y%)[al—az] X]
$ A0 018 (g(Z,00)] X]
= 0

and hence

[011 — Olg] X [0&1 — 042]

do do

do (X, Z, ap) /dgp(X,Z,oz)
A :

dp (X, Z
:Var< o (X, Z, o0)

%)

implying

do (X, Z,«
oy — ol = \/E{VGT(W[%OIQ]

E{Var <‘W)‘;Z’O[Z’Cm)m‘x)}

We will now introduce the conditions under which the desired convergence rates are derived.

%))

(v,v)

Assumption 5.1 (i) A is convez in ag, and g(Z, ) is pathwise differentiable at cp; (ii) for some

C1,C2 > Oa

IA

e B {m(X, ) Wo(X) ™ 'm(X, o)} lletn — aoll5

IN

2B {m(X, o) Wo(X) " 'm(X, an) }

holds for all cv, € Ay, with ||a, — agl] = o(1).

Assumption 5.2 For any g(-) in AY(X) with 5 > d,/2, there exists p*»(-)'k € AJ(X) such that
supx ey [G(X) = pH (X)'k| = O(ka /™), and kz 7™ = o(n=/4).

Assumption 5.3 (i) Each element of g(Z, «) satisfies an envelope condition in o, € Ay; (i) each
element of m(X,a) € AY(X) with ¥ > d,/2, for all a,, € A,.

In line with Ai and Chen (2003), let &, = supxcy ||p*"(X)||,, which is nondecreasing in k.

Denote N (4, Ay, ||||) as the minimal number of radius § covering balls of A,, under the ||| metric.
Assumption 5.4 ki, x Inn x £, x n~/? = o(1).
Assumption 5.5 In [N(e'/%, A,, [|-|)] < const. x kin x In(kyn /¢).

Assumption 5.6 X¢(X) = Var[g(Z, ap)| X] is positive definite for all X € X.
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The following result gives the convergence rate of the SLWCEL estimator under the Fisher metric.

The proof is provided in the Appendix.

Theorem 5.1 Under Assumptions 4.1 - 5.6, we have ||a, — ap||» = op(n~1/4).

6 Asymptotic Normality

To derive the asymptotic distribution of @m it suffices to derive the asymptotic distribution of

f(a,) = 70, for any fixed non-zero 7 € R%. The difference f(@n) — f(ap) is linked to the

pathwise directional derivatives of the sample criterion function via the inner product involving

a Riesz representor v*. Application of a Central Limit Theorem for triangular arrays of functions

indexed by a finite-dimensional parameter then shows the desired result. In this Section we introduce

the necessary notation, compute the Riesz representor v* and state the Theorem of \/m-normality

of En

Since f (a) = 7'6 is a linear functional on V, it is bounded (i.e. continuous) if and only if

wp (@) =1 (o)

< o0
0#a—ag€EV HOZ - aO“F

The Riesz Representation Theorem states that there exists a representor v* € V satisfying

le=  sup (O =S(00)l

0#a—apEV HO[iaO”F

and
f(a) = f(a) + (v a —ao)p
Hence,
f(@n) = f () = (v*, ap — 0‘0>F
Let
dg(Z dg(Z dg(Z
g(d(;a()) [Ozf aO] = g(dé/a()) (0 790) + g(d;lao) [hf hO]

For any h € 'H, there exists w;(-) € W for j = 1,...,dy such that

h — ho = — (wl,...,wdg) (97 00) = —w (9790)
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Define

dg(Z, o) ([ dg(Z, ap) dg(Z, ap)
% [w] = (gdho [wl] PR % [wd9]>
Dw(Z) = dg(dZé/QO) _ dg(j};QO) [w} (50)

where D,,(Z) is a dg X dg—matrix valued function. Definitions (49) and (50) imply

dg(Z, ) dg(Z, o)
TO [h — ho] = —TO [w] (0 — 6o)
and hence
DuZ) 00 = Y20 g WLy,
— dg(cfélao) (9 _ 90) + dg(j};om) [h _ hO]
_ dg(dZC,kao) [Oz B 040] (51)

By definition of |-||  this implies

o — aol7 = E{E (dg(dzf")[a—aoolwo(z,)()l (dg(deO)[a_O‘OOH}

= E{E[(0-00) Du(Z)Wo(Z X) " Dy(2) (0 — 0p)] X]} (52)

Let w* = (w{, e w;‘le) be the solution to
inf E{E[(0 - 00) Dw(Z)'Wo(Z,X) ' Dy(Z) (0 — 00)| X] } (53)

where "inf" is in positive semidefinite matrix sense. Using the definitions of w*, f (), (48) and (52)

2
||U*||§7 = sup B ‘f(Ot) — f(O;O)l
0#a—ageV o — aOHF
(0700)/7'7'/(9700)

(0 = 00)' E{E[D(Z2)Wo(Z,X)"' Du(Z)| X} (0 — 60)

= 7' [E{E[Du(2)Wo(Z,X)'Du(2)| X]}] "7 (54)
where v* = (v}, v}) € V. By the definition of w*, v} = —w* x v;. From this and (51) we have
WE) 1) (20 (59)
da
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Let
vy = [E{E [Du(Z)Wo(Z,X)"'Dy(2)| X]}] ' 7 (56)

Substituting (56) into the definition of ||||f, in (39) via the expression for (55) yields

E {E (dg(dzt’yo‘o) [v*])/ Wo(Z,X)! (dg(dzj‘o) [v*]) ' X] }

= E{E[(Dw-(2)v;) Wo(Z,X) " (Dw-(Z)v;)| X]}

2
lo*

= W E{E[Duw(2)Wo(Z,X) "Dy (2)| X]} v5
— 7 [E{E [Du(2)Wy(2,X) "' Du(2)| X]}]
XE{E [Dy-(Z)Wo(Z,X) ' Dy (Z)| X]}
x [E{E [Dy(Z2)Wo(2,X) ' Dy(Z)| X]}] ' 7
— 7 [E{E[Du(2)Wo(Z,X)"'Dy(Z)| X]}] ' 7
which matches (54) and thus validates (56) shown unique by the Riesz Representation Theorem.
The following additional conditions correspond to Assumptions 4.1-4.3 in Ai and Chen (2003)

and are sufficient for the y/n-normality of B,,:

Assumption 6.1 (i) E{E [Dy(Z)Wo(Z,X) ' Dy (Z)| X]} is positive definite; (ii) 6y € int(©);
(iii) Lo(X) = Varlg(Z, ap)| X] is positive definite for all X € X.

Assumption 6.2 There is a v} = (v}, —II,w* x v}) € A, — ag such that ||[v} — v*||, = O(n"1/4).

Following Ai and Chen (2003), let Ny, = {ay, € A, ¢ [Jan — aol| = o(1), ||an — ol = o(n™1/4)}
and define Ny the same way with A, replaced by A. Also, for any v € V, denote

dg(Z,a) | _ dg(Z,a+tv)

s 7
do dt a8

t=0

and

‘W[U]:E{df’(dzozo‘)[u] ‘X} as. Z

Assumption 6.3 For all « € Ny, the pathwise first derivative (dg(Z, a(t))/da)[v] exists a.s. Z € Z.
Moreover, (i) each element of (dg(Z,a(t))/da)[vk] satisfies the envelope condition and is Hélder
continuous in o € Nop; (ii) each element of (dm(Z,a(t))/da)[vy] is in AY(X), v > dy/2 for all
a €Ny.

The following result is proved in the Appendix.
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Theorem 6.1 Under Assumptions 4.1-4.8, 5.1-5.6 and 6.1-6.3, \/ﬁ@n —6p) 4, N (0,9) where

o (5 15])

— [E{E[Dw-(2)W(Z,X) ' D,-(2)| X]}] " (57)

Q

Note that if D, (Z) and g(Z, ag) are independent conditional on X then the expression (57)
reduces to the asymptotic variance-covariance formula (22) in Ai and Chen (2003) that is shown
to be asymptotically efficient by these authors. A consistent estimator of {2 can be obtained in the

following way: First estimate Wy(x;, z;) ™! with

(z;) (P'P)”" pbo(x;)

Wi = P
S(xi,6n) = > wijg(2,an)g (2, 8n)
j=1
WO(sz’aZj)71 = i(ziaan)719(2j7an)g/(zjvan)i(ziaan)71 (58)

Then for each s = 1,...,dy estimate w? with @w* which is a solution to the minimization problem

dg Z]7a7l) dg(zjaan) e -1
e EZZ ( T ) el

o X (dg(zman) _ 9(z,0n) [w5]>

dos dh

and let w* = (@7, ..., wy, ) implying

do dh

ﬁA (Zj) _ dg(zjvan) dg(2j7an) [&}\*] (59)

Finally, use (58) and (59) in a finite-sample analog of (57) to obtain

-1
= ZZw Da-(z) Wo(xz,z]) "D (%)

7,1]1

We note that for linear sieves computing w? does not require nonlinear optimization and thus the

covariance estimator is easy to compute.

7 Simulation

To evaluate the finite sample performance of the estimator @LWCE 1, defined in (26) against KTA’s

@c g, we have conducted a small scale pilot Monte Carlo (MC) simulation study aimed at maximum
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simplicity of the simulation design. More extensive MC analysis assessing the performance of LWCEL
and SLWCEL is currently being conducted and will be included in further updates of the paper.
Weset Z =X and Y = ;X + B5,X? + B3 X3 + e with heteroskedastic e = 0.5u|X|, u= U(-5,5).
A random sample N = 100 of X N(0,2) was truncated at —1 and 1 and spread over the interval
[—4,4] to avoid far outliers. The true parameter values were set at 5, = —0.2, 8, = 0.1, 85 = 0.3.

A typical data draw looks as follows:

Figure 1: Sample Simulated Data
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In order to deal with possible negative arguments in the log function, we followed the approach
suggested by Owen (2001) cited in Kitamura (2006) (p. 51): for a small number § = 0.2 we used

the objective function

log(y) ify>9d

log, y = oo
log(d) — 1.5+ 2y/0 — §°/26° ity <¢

Indeed, the proportion of y < § in the overall sample was 6.6 x 1073 and 4.7 x 1072 for /G\LWCEL
and 50 EL, respectively. The Nadaraya-Watson kernel estimator (Pagan and Ullah, 1999, p.86) with
the Gaussian kernel, employing the Silverman’s rule of thumb for the bandwidth determination
(Silverman, 1986, p.45), was used to calculate w;; the case of gc L. Thus each i-th local conditional
empirical likelihood of 50 g1, was normalized with its corresponding Z;V:;l w;; in the denominator
of the Nadaraya-Watson kernel estimator. In contrast, the denominator of the Nadaraya-Watson
kernel estimator was replaced with n=! Zfil Zjvﬂ wj; for the case of @Lwc er- This is equivalent
(up to a constant of proportionality) to weighting each i-th local conditional empirical likelihood of
ELWCE 1, with o; as defined in (??). We compared bias, variance and mean-square error over 100

MC iterations on the three estimated coefficients §;, 55 and 5. The results are as follows:
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Table 1: Simulation Results

Criterion  Estimate CEL LWCEL
Bias B, —9.100 x 1072 —8.619 x 102
B, 1.436 x 1072 1.471 x 102
Bs 1.050 x 1072 9.416 x 1073
Variance B, 8.297 x 1073 6.189 x 1073
B, 2474 x 1073 2351 x 1073
By 4.202x107*  3.916 x 10~*
MSE B, 1.652 x 1072 1.362 x 102
B, 2.681 x 1073 2.568 x 1073
By 5304 x 1074 4.802 x 10~*

Both estimators performed relatively well under the simulation scenario which can be attributed
to the relatively well-behaved nature of the data. Nonetheless, the /éLWCEL improved on the §CEL
in all cases, barring one bias term. The values of o; were also retained as an interesting byproduct of
the aLWC gL estimation procedure, weighting individual local conditional empirical log likelihoods.

Naturally, their magnitude follows the density of the data juxtaposed against o; in Figure 2:

Figure 2: Plot of o; against x;

Osigm a—-—kdensity X

8 Conclusion

In this paper we propose a new form of the Conditional Empirical Likelihood (CEL), the Locally
Weighted CEL (LWCEL) estimator for models of conditional moment restrictions that contain fi-
nite dimensional unknown parameters #. This estimator extends the CEL analyzed by Kitamura

et al. (2004). In contrast to previous literature, we consider an information-theoretic dual locally
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weighted GMC optimization problem built directly on conditional moments that minimizes a dis-
crepancy from a probability measure according to which the data was distributed. In a Monte
Carlo study, we show that the resulting estimator exhibits better finite-sample properties in the
finite-dimensional case E [g (Z,6p) | X] = 0 than found in the previous literature. We further extend
the LWCEL estimator to the semiparametric environment defined by models of conditional moment
restrictions F [g (Z, ap) |X] = 0 containing both § and infinite dimensional unknown functions h.
We establish consistency of the new estimator a,,, convergence rates of @, under the Fisher norm,
and asymptotic normality of the finite-dimensional component 5n. The new Sieve-based LWCEL
estimator (SLWCEL) is a direct alternative to the Sieve Minimum Distance estimators considered
by Ai and Chen (2003) and Newey and Powell (2003). As shown by Newey and Smith (2004), GEL-
type estimators, such as EL, outperform the GMM estimator in terms of higher-order properties in
parametric models E [g (Z,0y) |X] = 0. We conjecture that a similar type of improvements is likely

to occur also in the semiparametric context of E [g (Z, ap) | X] = 0.
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Appendix 1: Proofs of Main Results
LWCEL

Note: just bare bones results stated - needs tidying up.

Lemma 1 Eq) [p(0,dQ(ylx)) | X] = infr(sy)eimy xexy D (2, y), Qz, y))
Proof.

Let My denote the set of all probability densities on R? and let

w(X;0) = {ﬂ(y\m) € My : /7r(y|x)g (Z,0)dm(ylz) =0; X € X}

Define the set of all probability densities that are compatible with the conditional moment restriction (?7?)
by
7T(X) = Uee@ﬂ'(X; 0)

This result can be conveniently derived by converting the optimization problem into one in which all
integral operators are taken with respect to the Lebesgue measure. In (9) multiply the argument inside ¢ (-)

by Q@) — 7@) — 1 5 obtain

dQ(z) — q(x)
) d
i1 B 0,00 X = [ o (558 dqwie)
= Fow |, nt D xGe). a(uie)|

= ot [a) |t [l (ZHD ) anie) | ane)
= gt it [a@aios (SEE D dngiaan()

i i ﬂ-(x>y)
— inf ¢ J
égew(x,y)e{ll{lfly:XeX}/q(x7y)¢<Q(az,y)) m(@y)

= o o b 60
égew(z,y)e{ll{l/[Y:XGX} ( (w,y)7Q(ZIJ,y)) ( )

The marginal density g(x) of X is independent of the parameter § and hence the former can be estimated
directly from the data. The same holds for the "choice" marginal density m(z) in the optimization problem
and hence m(z) = ¢(z) which was used in deriving the expression above. m
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SLWCEL

Discussion of Consistency

In outlining our consistency proof, we follow the discussion as given by KTA and extend it to our case
of infinite dimensional parameter space. For a standard extremum estimation procedure (for example via
maximization), consistency can be shown by considering the sample objective function and its population
counterpart and arguing in the following manner. Consider an arbitrary neighborhood of the true parameter
value. Check that:

(A) Outside the neighborhood, the sample objective function is bounded away from the maximum of the
population objective function achieved at the true parameter value, w.p.a. 1.

(B) The maximum of the sample objective function is by definition not smaller than its value at the true
parameter value. The latter converges to the population objective function evaluated at the true value, due
to the LLN.

By (A) and (B) the maximum of the sample objective function is unlikely to occur outside the (arbitrarily
defined) neighborhood for large samples. This shows the consistency.

While Newey and Powell (2003) were able to recast their estimator as an argmin of a quadratic form
delivering (A), in Chen (2005) (Theorem 3.1) (A) is assumed. In our problem, however, such approach cannot
be applied directly. Specifically, showing (A) is problematic here, since the objective function G, defined
in (34) contains the Lagrange multiplier A(aw,) which is endogenously determined at each au,. Therefore, in
our proof we follow the KTA approach binding G,, with a dominating function and then check (A) for the
latter by comparing the convergence rates of G, at ag and outside a §—neighborhood of ap. The convergence
rate of G (ap) is a new result which differs from the one of KTA since the definition of our G,, contains
an additional term o; arising from the use of a different weighting scheme and due to our estimator being
based on series rather than kernel weights. In our proof, a Uniform Law of Large Numbers (ULLN) for the
dominating function is used only for a,, outside the §—neighborhood of ag.

Regarding the complications incurred by considering an infinite dimensional parameter space a, we note
that our consistency proof differs from the ones used in Newey and Powell (2003) (Theorem 1) and Chen
(2005) (Theorem 3.1) for M-estimators with «. Using a ULLN over the sieve space, these authors show
that the sample objective function G, and its expectation are, w.p.a 1, within a §—neighborhood of each
other when evaluated at a parameter &, in the sieve space that converges to the true parameter value ag.
Existence of such parameter &, is guaranteed by the definition of the sieve space. This approach, however,
would necessitate evaluating the convergence rates of G (&) to its expectation which is problematic in our
saddle-point case since it is difficult to capture the behavior of the endogenous \;(a) away from «g. Recall
that @y, is defined as maximizing G (an) over the sieve space A, and thus using G, (), o € A for estimation
purposes would yield an unfeasible estimator. Nonetheless, the function g(z;,«) and hence the functions
Gn(a) and X, (x4, ) can theoretically be evaluated at a generic parameter value a € A not restricted to the
sieve space. Hence the asymptotic rate of convergence of G, (o) at the true parameter value can be derived
to facilitate asymptotic analysis.

Further Notation

Let us introduce some additional notation. Let ||-||; denote the Euclidean norm. Define
a = o;—1
n
= Y wy—1
j=1
ot / -1 Kk,
= 1P(PP) p () — 1
For generic n vectors z and a vector z we drop the subscript ¢ and use

a. =i'P(P'P) 'p"(z) -1 (61)
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Further define B(ao, §) and By (ao, §) as —neighborhoods around a with B(ao, d) C A and B, (ao,0) C Ax,

respectively. Consider the function (X, «) as defined in (38). Denote
n
¢n(wi7a) = Zwij(p(xiazﬁa)
j=1

= Zwijln{ai‘f')\;g(zﬁo‘)}

Jj=1

Gn(an)

_% Zzn;wn(x“a)

1™
_E Zzwﬁip(xhzﬁa)

i=1j=1

_% Zzw” 11’1{0’»; + )\;g (Zj,Oén)}

i=1 j=1

Sa(ziya) = Y wig(z,a)g (2, 0)
j=1
2(X,a) = Ez[EZ.(X, )]
and recall the definition of ¥o(X) = Var[g(Z, a)| X] in Assumption 6.1 (iii).
Main Proofs

Proof of Theorem 4.1. Following KTA, in the asymptotic analysis we will replace A;(a) by

Elg (2, ) |i]
L+ 1E(g (2 ) |2i]l)

u (T, ) =
For a constant ¢ € (0,1) define a sequence of truncation sets

C, = {z : sup }az + (x,an)g(z,an)| < Enl/m}

acA
and let
Sn = n*l/m [az + ul (w7 a’ﬂ) g (Zva"):l ]I{Z S Cn}
Let
qn (T, z,0n) = —log (1 + ™ [ag + (2, an) g (2,00) | T{z € Cn})
= —log(1+sn)

The modified objective function is
1 n n
Qnlan) = — DD wijn (@i 2, an)
i=1 j=1

Note that
Gn(an) < Qnlan)

for all a, € A,, by the optimality of A;.
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Then by the Taylor series expansion for logarithms

where

qn(x,z,ozn) =

—log (1 + s»)
=2
—Sn + 7
—Sn + SEL

_n—l/m [

2(1 — tsn)

az + U (z,0m) g (2, 00) ] I{z € Cr} +

2

2(1

tsn)

= p ¥m [az +u' (z,0n) g (2, an)] —pYm [az +u' (z,00) 9 (2, an)]

_ nfl/'m [

"z, o)
"z, o)

"z, an)

n—2/m [
+

g (z.0)]
(2. 0)]
9 (z100)]
9 (z100)]

I{z e Cn}+

Qg + ’U/ (513, an) g (Zv an)

(1-I{zeCn})+

Sn

2(1 —tsn)

L
2(1 —tsn)

+ Rn t, aaman)

az +u' (z,an) g (2, an)} 1-I{z€eCn})

I{zeC,}

Note that, by the triangle and Cauchy-Schwarz inequalities

Ru(t azon)] < 0™ o]+ [Ju’ (@0 g (z:0n)l]] (1~ I{z € Cu})

and by ||u' (z,an)|| < 1 we obtain

From (6

21 —tn=Y/m [ay + o' (x,an) g (2,a0)]1{z € C,,})?

(69)

n=2/m [ai +2las v’ (2, an)ll lg (2, an)ll + |[u’ (2, @) ||9(z,an)|\2] [{z € Cn}

+

‘Rn(tv Qg , Oén)|

5) it follows that

and hence

|R"(t7 Qg Oén)‘

N

IN

201 — tn=Y" [az + ' (2, n) gn (2, an)])?

< 0 Y™ |ax| + g (z, 0[] (1 = 1{z € C,})

n”2 (a2 + 24z ||g (2, an) || + llg (2, an)|*]

|
2(1 —tn=1/™ [ag + ! (2, 0m) gn (2, 0n)])?

> oV

acA
> n*l/'m
>

|az +u' (z,00) 9 (2, ozn)|

sup |aL +u' (z,am) g (z,an)|

"™ |ag + ' (2, a) gn (2, o)

" (las] + llg (2 )] (1~ I{z € Cu})

+

n”2™ [al + 2aq g (2 an)l| + |9 (2, 0n) ]

2
—2/m Qg

+n

2(1 —¢)?
0™ [las| + g (2, an) ] (1 = 1{z € Cu})

n”*™ 24z ||g (2, )| + Ilg (2, @) 1]

2(1—0)2
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taking sup over A we obtain

2
sup |Rn(t, az, )| < n7H™ {Iawl +sup ||g(z7an)||] (1-I{z€Cn})+ n_Q/mg(ﬁ%az

acA

n=?™ (20, supge a llg (2 an)ll + supaea llg (2, 0m) %] (70)
2(1 —¢)?
In view of (69) and (70) approximate n*/™Q, (axn) by n*/™Q,, (an) where
_ 1 n
Qn(an) = i > ! (@i, om) Eg (2, a0) |2 (71)
i=1
Lemma A.2 shows that
n"Qun(an) = n*’™Q, (an) + 0p(1)  uniformly in a, € A, (72)

Next, we will apply a uniform law of large numbers to nl/m@n(a) over the whole parameter space A.
Under Assumptions 4.4(i), 4.5, and 4.6 E [g (2, @) |z;] is continuous in o € A by Corollary 4.2 of Newey
(1991), and so is
By (z,0) [z

1+ [E[g (2 a) |z]|
Under Assumption 4.5(i) E [sup,e 4 |—u' (#i,@) E[g (2, ) |zi]|] < oo. These, together with Assumption

4.4(i) satisfy the conditions of Lemma A2 of Newey and Powell (2003) implying the following uniform law
of large numbers:

— (wi, Oé) E [g (Za O‘) ‘mv] =

sup [n'/"Q, (@) — B [~ (z:,0) Blg (2,0) lai]]| = 0p(1) (73)

where —FE [—u' (z;, @) E [g (2, ) |x;]] is continuous in .A. This function is bounded above by
—E [u (2i,0) E[g(2,0) |2i]] < B [[{z € Xa} | Elg (z,0) [ei]|*/ A+ | Elg (z, ) |w]l)]  (74)

By Assumption 4.1, the right-hand side of this inequality is strictly negative at each a # «g. Therefore,
by continuity of —F [u' (z;, @) E [g (2, @) |z;]] and compactness of A, there exists a strictly positive number
H(4) such that
sup B[~ (zi,0) Elg (z,0) |zi]] < —H(5) (75)
acA\B(ag,d)

By (68), (72), and Assumption 4.4(ii) we have

sup n™Grom) < sup nY™Qn(an) = sup n'/™Q, (an) + op(1) (76)
an€An an€An an€An

Together (76) with (75) and (73) imply that

Pr sup Gn(an) > —n"Y"™H() } <6/2  eventually. (77)
an€An\Bn(a0,0)

Next, we evaluate G, at the true value ap and show that G, (ao) converges to its expectation faster
than Gy (an) with oy, outside a d—neighborhood of ap whose convergence rate is given in (77). Having
established this fact the conclusion of the proof is then straightforward. This approach was taken by KTA
for the finite-dimensional parameter 6 and we extend it to the infinite-dimensional parameter c. Our way
of deriving the rate of convergence of G, (o) differs from KTA, though, because we do not make use of
kernel-based results. Rather, based on the series literature, we derive a new result for the rate of convergence
by specializing Lemma A.1(A) of Ai and Chen (2003) to our case.

Using Lemma A.4 and the fact

1+(1i:2wz'j >0 for each i

Jj=1
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we obtain

1 n n ,
Gn(ag) = —EZZwUlog(l—i—ai+)\i(a0)g(zj,o¢0))

i=1 j=1

1 n n
- D> wij (ai + A (a0) g (25, @0))
i=1j=1

1 n n
= - 21 i (@0) Z wijg (25, ao)
= =
Z wijg Z]7 Oé()

\%

v

— max H)\ (a0 H max
1<i

Then by Lemmas A.1 and A8,
~ 1 2
Gn(ao) = {09(51n) +op (ng—l/m>}

where

~ 1
Th = Op((sl’n) + Op (W)

with gln defined in Lemma A.7 and g defined in 4.7. Therefore, we have the following LLN

Pr{Gn(a0) < —reH (6)} <8/2  eventually. (78)
Denote
Qi) = n'"Gu(e)
Q2(a) = 1.°Gula)
Qi(a) = -—-F [u'(x, a)E [g(z, a)|x]]
Qa2(a) = EQsx(w)

where the last expectation is taken with respect to the joint density of (Y, X). Under Assumptions 4.4(i),
4.5, and 4.6 Q2(«) is continuous in a € A by Corollary 4.2 of Newey (1991). Note that since nt/mr2 0
and /™G, (o) < 0, by (73) and (76), w.p.a. 1,

-2 > nl/m
Q2(0) < Qi(@) (79)
Q

1
If we retain A;(«) instead of u(z, ) in the definition of Qn () in (67), using A;(«) = O, (1) which follows

from (35), we can derive an analog of Q,,(a) in (71) as

QZ'n(a = n1+1/m ZA E [g 2, Oé) |.’Z’J
By a corresponding analog of (72) and the moment restriction E [g (2, o) |z:] = 0 it follows that Q,,, (o) = 0
and Q2(ap) = 0. Also, by (74) Q1(ax) < 0 for each 6 # 0y and thus

Q1(an) <0 (80)
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Then, w.p.a. 1,

Qi(@n) > Qi(@n)+H(5)/2 (81)
> Qi(ao) + H(9)/2 (82)
> Qo) + H(9)/2 (83)
> Qa(ao) + H(9) (84)
= H(5) (85)

where (81) holds by (73) and (76), (82) holds by the definition of @, (83) by (79), (84) by LLN at aqg (78),
and (85) by Q2(ao) = 0. By (80) and ¢ being arbitrary, taking H(§) — 0,

Q@) 50
Then, using Assumption 4.4(ii), Pr (’@1(6) - Qz(ao)’ > H(é)) — 0 and by (77) Pr (an € An\Bn (00,9)) —

0.
]
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Proof of Theorem 5.1.

In deriving the convergence rates under the Fisher norm ||-|| , we will proceed in a way that is similar to
the proof of Theorem 3.1 in Ai and Chen (2003). Specifically, we will use their Lemma A.1 and Corollary A.1
that hold for a generic function m(X,«) and the Euclidean metric. However, since our objective function
and metric differs from the ones used by these authors, we need to derive the counterparts of their Corollaries
A.2 and B.1 for our case.

Recall the definition of G, (a,) in (63)

1 n n
Gn(an) = - ZZwU In{o; + Aig (25, an)}

i=1 j=1

and define

Gn(an) = —% Z E [ln {J,- + Ng(z, an)} |xl] (86)

Let 8o, = o(n_1/4) and denote ano = Ilag (the orthogonal projection of ag onto the sieve space).

P (Han - aOHF 2 6071) =P sup Gn(an) Z Gn(ano)
{llan—aoll p>80n,ancAn}

For the sake of brevity, let "AC" stand for "Ai and Chen (2003)" for the remainder of the proof. Note
that Assumptions 3.1-3.2, 3.6-3.8 and 4.1(iii) in AC are equivalent to our Assumptions 4.2, 4.3, 5.2, 4.5, 4.6,
5.3-5.5 and 5.6, respectively. Assumption 3.3 in AC is implied by our Assumption 4.1 and the condition (1).
The analog of AC’s Assumption 3.4 for our X, (z;, ) defined in (64) is satisfied by AC’s Corollary A.1(i).
Thus Assumptions of AC’s Lemma A.1 and Corollary A.1 are satisfied.

Lemma B.1 states the counterparts of their AC’s Corollaries A.2 and B.1 for our case. We note that
condition (A) of our consistency proof was shown to hold for G, (cs,) in Theorem 4.1. Since Gn(an) <
Gn(an), by (76) the condition also holds for G, (e ). Thus the identification condition is satisfied. Satisfying
Assumptions of Theorem 1 of Shen and Wong (1994) is also a necessary condition for AC’s Theorem 3.1.
Since the role of the pseudodistance in Theorem 1 of Shen and Wong (1994) is performed by our metric ||-||3,
in a way topologically equivalent to the AC’s one, and the remaining AC’s Assumptions hold as described
above, this condition is also satisfied. Invocation of AC’s Theorem 3.1, with their objective function and
metric replaced with ours, completes the proof.

]

Proof of Theorem 6.1.
Substituting (56) into (55) yields

W [v*] = Duw=(Z) [E{E [Dw(Z)'Wo(Z,X) ' Duw(Z)| X]}] r (87)
Note that by the chain rule
dp (X, Z,a0) . .,  do(X,Z,a0)dg(Z,00), «
da = dg (Z,a) da [l (88)

Using Lemma C.1 and (87) in (88), we obtain

dp (X, Z,a0) . ., do(X,Z,a0) , 1 1
SLanlyy D) (2) (BB [0 (2 W2, D (D X]] (9

We will now check the conditions for Theorem 7.1 in Appendix 3 that is an extension of Theorem 1
of Shen (1997) to our conditional case. Lemma C.2 shows that under our Assumptions, Conditions A is
satisfied. Since {g(z,an) : an € An} C AZ(X), Condition B follows directly from Lemma B.1. Since
@n — a0l = 0p(n~'/*), then §, = n~/* and hence for Condition C we require

Op((s;lz-:i)

sup llenu™ — enun|
{an€An:|lan—agl||<én}

= Op(n71/4)
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which is satisfied by Assumption 6.2. Condition D follows from the smoothness of W%ao)[a — ap) in

Non. Condition F is satisfied by the definition of f (an) = T/b\n, w =1, and Assumption 6.2. Condition G is
satisfied by Assumption 6.1.
By Theorem 7.1 in Appendix 3, for arbitrarily fixed 7 € R% with |7| # 0,

VT (0n — 00) —% N(0,Z,+)

where

s.. = B {VM (M

)]

= 7'Qr (90)

and hence .
Va0, — 60) 5 N(0,Q)

Using (89) in (90) we obtain

-1

Q = [E{E[Duw(2)Wo(Z,X) 'Du-(Z)| X]}]

o (55751

x [E{E[Duw(2)Wo(Z,X) " Dur(2)| X]}] 7" (91)

Using Lemma C.1 and (91)

Q= [B{E [Du(2)Wo(Z,X) ' Do (2)| X]}] "
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Appendix 2: Auxiliary Results
A. CONSISTENCY

Lemma A.1 (B.3) Let Assumptions 4.5 and 4.7 hold. Then, pointwise for a given o € A,

~ 1
121%)(71 =0p(61n) + 0p (ngfl/m>

Zwug zj,a) — B [g (Z a) |LE1}

where 81y, is defined in Lemma A.7 and ¢ in Assumption 4.7.

Proof. Decompose

- Elg(z,a) |zi] ax wag (z5,a) = Elg (2, ) |zi]|| Li,n
+ max leijg(%a) — Elg(z, ) w] 1121?3%]1”

Note that he results of Lemma D.3 and D.5 in KTA hold also for w;; as defined in this paper. Therefore

1
max max If, =op | ——
1<i<n 1<i<n Tlgfl/m

Zw”g zj,a) = Elg (2, @) |zi]

Next, pick any € > 0, ¢, | 0, and observe that

> ecn}

zwmg 2,) ~ E[g (2 0) |z

%, 2 T,m n <
{fgaggn Zw]g zj,a) — Elg (2, ) |x;]|| Li,n > €c } Pr{)s(té;))(
Using Lemma A.7,
{sup Zwug 25,0) — Elg (5 0) 2] > } <e
Xex
if ~
Cn = 6ln

where gln is defined in Lemma A.7. Hence

max Lin =o0p (51n)
1<i<n

Zwijg (z5,) = Eg (2, @) |zi]

and the desired result follows. m

Lemma A.2 (B.8) Let Assumptions 4.5 and 4.7 hold. Then

sup !Qn an) — @n(a"” = OP(n_l/m)
an€An
Proof. Substituting from (69) for gy (zi, zj, @) we obtain
1 n n 1 n
1/m sup - Z Z'IUijqn (i, 25, an) + rim Zu/ (ziyom) E'lg (2, an) 23]
an€An i=1 j=1 i—
m 1 - m
< nt su-/pil 72211;27 {_ -1/ [a +u' (zs,00) g (25, ) }—‘r n1+1/m Zu (i, an) E g (2, an) |2i]
an€Ap i=1 j=1
1/m
+n sup |— wij Rn(t, as, o)
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= sup —fZZw,]al—k Zu zi, o) Eg (2, an) 23] ——ZZw” (zi,an) g (25, am)
an€An =1 j=1 =1 j=1
1 n n
apt/m sup fZZwinn(t,ai,an)
an€An |37 50
1 n n
< - swp ,Zzw”az + sup = N Eg (2 am) fui] = Y wijg (2, am)
an€An |21 521 am€An T 527 j=1
+nt /m sup w;j R (t, ai, otn

The first term drops out by Lemma A.4, the second term is o,(1) by Corollary A.1(i) in Ai and Chen
(2003), p. 1824, and the third term is o,(1) by Lemma A.3. =®

Lemma A.3 Let Assumptions 4.5 and 4.7 hold. Then

ZZw,JRn (t,ai,an)| =

1131

n' sup =0,(1)

an €Ay

Proof. Note that by (70)

1/m
n sup

an€An

fZZwU (t,ai, an)

=1 j=1

nl- l/m ZZ“’” sup (t7aivan)|

i=1 j—1 anGAn

LSS [l + sup g Ganl] -1z € )

i=1 j=1
1 1 n ) n
pl+l/m 2(1 — )2 Zai Zwij

Z Z 2“1 SUDg, cA,, llg (25, )|l +sup,eallg (2, an)l }
n1+1/m 2(1—¢)2

1=1 j=1
= Di+ D3+ D3

IA

IN

Jr

By Assumption 4.5(i) and 4.4(ii), sup,, ¢4, |lg (2, an)| < co. By Lemma A.5 |a;| < oo and hence by Lemma

A6
722“&] |:az|+ sup Hg(Z7,()én)H ()

=1 =1 an€An

Since maxi<;<n [{z; € Crn} = 0p(1), D1 = 0p(1). By Lemma A.6 Dy = 0,(1).

I v [2a;sup,, c 4., 19 (2, )|l + supye 4 19 (25, an)||]
D - - i n€An
3 nlt+1l/m ;;wﬂ 2(1—5)2
ZZ ZZ SupanEAn lg (25, 0m)I”
n1+1/m 1-0)2 < Wij@i + 1+1/m 22
=1 j=1 =1 j=1

where the first part drops out by Lemma A.4 and the second part is 0,(1) by Assumption 4.5(i), 4.4(ii) and
Lemma A.6. m

Lemma A.4 Under Assumptions 4.8 and 4.4, for wi; defined in (29) and a; defined in (61), it holds that

%izﬂ:wijai =0

i=1 j=1
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Proof.

1 1 n n
P D wn = 1Y wdw,
1= Jj=
1 n n n
z[z]z
i=1 Lj= j=1

= = Z [ k(@) P (P'P) T pt () — VP (P'P) T p (mi)]

- ! Z [ﬂp o (@)p (@) (P'P) T Pli—i'P (P'P) pk"(:ri)]

Y] / -1 / ’ -1 /._l - o/ ’ =1 kng...
= i'pP(P'P) (P'P)(P'P) Pl n;m(PP) P (2:)
PP P’if%i’P (P'P)"' P

O3~

Lemma A.5 Under Assumptions 4.3 and 4.4, for w;; defined in (29),

Z Wiy = O(l)

for each X € X.

Proof. By Assumption 4.3, for any E [p, (Z, @) |;] there exists p* (z;)'m; = > j—1 wijgi (2, @) such that
E\E(g(Z, )|z — Zwmgl (zj,0)| = 0(1)

The result follows by boundedness of g; (z;, ). m

Lemma A.6 Under Assumptions 4.3 and 4.4, for w;; defined in (29),

n n

% Z > wij = 0,(1)

Proof. Follows directly from Lemma A.5. m

Lemma A.7 Let

_ kn
= o]
Xex E
op*n (X)
. = sup||————*~
& Xex oz’ E

Let g : Z — R denote a generic measurable function of the data Z € Z, evaluated at a given fixed parameter
a. Define e (Z,a) = §(Z,a) — E[§(Z,a)|X] and e(a) = (e (Z1,Q) , ..., (Zn, ).

Suppose that Assumptions 4.2 and 4.3(i) and the following are satisfied:

(i) There exists a constant cin and a measurable function c1(Z) : Z — [0,00) with E[c1(Z)P] < oo for
some p > 4 such that |§(Z,a)| < cinc1(Z) for all Z € Z;

(i1) There exists a positive value §1n = 0p(1) such that

néln
ln [(51”61” )dw] max {§Oncln7 §0n2/p51 2/Pcl+2/P}

S1in 1in 1in

— OO
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Then i .
P (X) (P'P)" " P'e(a) = 0p(61n)

uniformly over X € X.

Proof. This result specializes Lemma A.1(A) in Ai and Chen (2003), derived for the combined space
X x A to the space X only, with g (z;,a) evaluated at a given fixed c. Since we do not have to account for
growth restrictions on the parameter space, we are able to obtain faster convergence rate 01, than Ai and
Chen (2003).

Let ¢ denote a generic constant that may have different values in different expressions. For any pair
X1 €X and Xo € X

’p’“” (X1)'(P'P) " P'e(a) — p*" (X2)'(P'P) " P'e(a)
= ] [pk“ (X1) —p* (Xz)]' (P'P) " P'e(a)

Note that

2
[Pty =y || < €% - Xl

It follows that

! _ 1
[ (x0) = (x2)] (P'P) Peo)] < €, 1% — Xal2 | > (2 0)?
"oi=1
where A, denotes the smallest eigenvalues of P'P/n. Condition (i) implies
- if (Zi,)? < i i (e1(Zi) + Eler (Zi)1X:))?
i 7 oI

Assumption 4.3(i) implies A, = Op(1). Applying the weak law of large numbers and E {(E [c1 (Z;) | Xi])?} <
E{c1(Z)?}, we obtain

n

25 (e (2 + Bla (2)1X)? = 0p(1)

i=1

Thus there exists a constant ¢ such that

n

Pr % Z (1 (Z)+Eler (Z3)|X)) > e | <n

for sufficiently large n.

For any small € partition X into b, mutually exclusive subsets Xm, m = 1,...,bn, where X1 € X, and
X2 € X, imply || X1 — X2H2E < €d1n/(c1n€y,¢). Then with probability approaching one we have

|5 (X2) (P'P) ™ Ple(a) = ' (Xa)' (P'P) " P'e(a)| < cbin

Let X, denote a fixed point in X,,. For any X there exists an m such that || X7 — X2||i3 < Egln/(cln§1n0)~
Then with probability approaching one

sup ‘pk" (X)’(P'P)_lple(a)‘ < €b1n + max ‘pk"(Xm)'(P'P)_lP'z-:(a)
Xex m

Hence
Pr (sup ‘pk" (X)/(P/P)flP/E(oz)‘ > 265171)
Xex

< 27+ Pr (max ’pk" (Xm)’(P’P)_lP’s(a)‘ > 231, )
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For some constant ¢, let

2/
= (e
S1n€n

Define din, = [{c1(Z) < My} . Define g1(Zi, @) = ding1(Zs, ) and g2(Z;, ) = (1 — din) g1(Zs, ). Define
€1(Zi, ) and €2(Z;, o) accordingly. It follows that

Pr (max ’pk" (Xm)’(P’P)_lP’s(a)‘ > 26'51n)

m

P (Xm) (P'P)™' Y e1(Zia)

< Pr (max > 651n>
m im1
+Pr <max P (X)) (P'P)? ng(Zi,oz) > egln>
i=1
= P+P

Ai and Chen (2003) show that P» <1, along with

an:nE{

[P (XY (P P/m) ™' P (X)en (Zi, )|

.
pr(

Ai and Chen (2003) apply the Bernstein inequality for independent processes to obtain

Pr ( > 661n>

< 2F [exp (—na%ﬁn/ (cafn + Mnﬁgncan:Sgln))]

n

P (X)) (P'P)H Y P (Xi)er(Ziy )

i=1

2
} =0(c1,.6,)

and )
S Mn£0ncln
ATL

> 55171)

pkn(Xm)’(P/P)—lZ&‘l(zi,a) > Eghl ‘ Xl,...,Xn>:|

i=1

Noting that

P (Xn) (P'P) Y 1(Zisa)

i=1

= FE

P (X)) (P'P)T1Y " e1(Zisa)

i=1

where E[] is taken with respect to the joint distribution of (Xj, ..., X,). Hence
P <20, F [exp (—naQan/ (cafn + Mnégncfn)\zlsgm))}
which is arbitrarily small if
ndr,

2 2 <
max {€3,3,,, Mn€3,, 1010 }

—1In(b,) — 0

Since X is a compact subset in R?, we have

G\
bn -0 < in >
Clnfln
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Substituting for M, and b,, we obtain

~2
n51n

In(b,, ) max {fgnc%n, Mnﬁgnclngln}

~2
_ n51n
- = —dg ~1 2
R EPSN PR
néin

Thus, for Pi < n for sufficiently large n by condition (ii). m

Lemma A.8 (part of B.1) Let Assumptions 4.2-4.6 and 4.8 hold. Let also nM"81, 1 0and p > 2/m
where 01y, 18 defined in Lemma A.7 and o in Assumption 4.7. Then

e (el = oB10) + 0, (7 ) (02)

1<:< o—1/m

This Lemma is analogous to Lemma B.1 of KTA. However, the analysis is somewhat complicated due
to the extra term o;. Moreover, here we do not make use of results related to kernel estimation. Thus, for
example, consistency of the variance-covariance matrix X, (x;, ao) follows from series results of Ai and Chen
(2003).

Proof. In this Lemma, we will use the F.O.C.s (22) and (24) that combine to

n

Wij o
; L+a;+Xig (zj,0) Z Aig ( z], )+ o
j=1
=1 (93)
Let
Ai (a0) = p;€; (94)

where p; > 0 and &, € R%. Tt holds that

Zn: [ai + N, (@0) g (27, 00)]> 2 zn: Wi N 2aip; 371 wij&i9 (25, o)
— ”1+at+>\ () g (25, 0) "= 1+4ai+ A (a0)g(z,a0) 1+ ai+ A (ao)g (2, a0)
2 ¢/
Pi &% (2, 0)§;
+ 95
T+ ai XL (00) g (25,00) %)
For the first term of the RHS sum of (95), using (93), it holds that
2 wzg 2
a; = a
; 1+ ai + i (@) g (2, 0)
(0i — 1)
= 07 —20i+1 (96)
Substituting (96) into (95) yields
n ) ’ ) 2 2a,p; Y7 wiji&ig (25, a
S [ai + N (olto)g(z],ao)] _ 9,414 P Zj_ll 3€:9 (2, ao)
o T 14ai+ A (@) g (25, a0) 1+ ai +Xi(a0) g (25, a0)

1+ a; + A (ao) g (25, 0)
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Note that for a generic constant ¢

lic - 1ic+(1_c)_(1_6)
2 —
2 2

- lj—c_'_ll—l—cc_(l_c)
- 1—1|—ci1+C

Using this fact, letting ¢ = a; + Aj (aw) g (25, a0), we have

n

1 i ao)g(Z]7a0)

n

_ wij
- Z1+az+A (a0) g (25, o) sz]+2w”az
+Zwij)\; (a0) g (25, o)
j=1

= 1- Z'UJ'L]' + Zwijai + Zwij/\; (a0) g (25, o)
j=1 j=1 j=1

By the definition of o,

n n
l—Zwij—&—aiZwi]— = 1—01+(U¢—1)O’i
j=1 =1

0'12—20'7;4—1

Substituting (99) into (98) gives us

Xn: lai + A (@0) g (25, a0)]?

2 /
w; =o0; —20;+1+p; wi;€,9 (25, o
Jl—!—ai—&—)\;(ao)g(zj,ao) p. Z Jgg( 7 0)

j=1

j=1
Combining (97) and (100) yields, after canceling o7 — 20 + 1 from both sides,

2aip; 35—, wii&ig (2, o) P26 5, (2, a0)€,
1+ai+ XN () g(zj, )  1+ai+ N (0)g(z5,x0)

=P Zwl]£ g ZJ,OZO)

Jj=1
Using Assumption 4.8, by Lemma D.2 in KTA,
p(n'/™)

max [lg (z),a0)]| = ou(n

and this op(nl/m) term does not depend on 4, j, or an € A,. By (102) it holds that
0<1+ai+ X (a0) g (2,a0) < 1+ai+p; g (2, 0)|| = 1+ ai + p,op(n*/™)
Using (103) in (101) and canceling p, yields

2ai 320 wii€ig (2, q0)  p€l %, (i, a0)E,
1+ a;i + p;op(nt/™) L+ ai+ p;op(n l/m

szg§ g Z],Oco)

Z w; az+>\ ) (Zj7a0)}2 _ zn:wl 1 —1+az+)\/ (ao)g(z ao)
e () o) 2\ TH a1 X (a) 9 (5 : 2

(98)

(100)

(101)

(102)

(103)

(104)

By Corollary D.1 of Ai and Chen (2003), X, (x;, a0) = 2(xs, a0) + 0p(1) uniformly over X € X. Using

the fact that &;¥(x;, ao)é;

3
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is bounded away from zero on (z;,&,) € R x R%, we can divide (104) by



&1 8n (z4,20)¢;

—e=n vt gnd rearrange terms to obtain
Tta; +psop(nl/™) 8

pi < [1+ait o™ Lo wiubg (z00) Yo iy (5 c0)
[ —= 7 iYp 7 (2 7
§i%n (@i, a0)§; §i%n (@i, a0)§;
D01 wii€ig (25, o) | Ly 2oge1 Wii&ig (25, C;o)
= (1-a) =5 piop(n/") =15

£i5n (i, 0)E; &80 (@i, a0)é;

and hence
pi|1- Op("l/m) Z?:/I wiskeg (7, a0) < (T—a) 272/1 wiskid (5, 0)
l & Zn (i, 20)¢; & 2n(xi, a0)é;
>y wiz€ig (2, o)
'5:;2”('%% ao)gi

n gl ) -1
% (1 _ Op(n1/m)2j:1 w59 (25, aO)) (105)

pi < (I—ai)

& n (i, a0)§;
For the last term of the RHS of (105), using Lemma A.1 and ||£}|| < oo for all i, it holds that
n ! n
1/m Zj:l wi;&;g (Z]-, aO) . 1/m
= op(n max wijg (25, a
) &i%n (zi, 0)E; 2 Il 1<i<n ; 19 (2, o)
= o n™)0W) |0pGrn) +0p (e
= 0pn Op\01n Op ne—1/m
. 1
= 0p(n*™61n) + 0p <W> (106)

op(n

while for the first term of the RHS of (105), using also Lemma A.5,

(1 - ai)

>y wig€ig (2, o)
&30 (Ti, a0)€; oa ’5 lega<x Zw”g %, )

o(1o(1) {o,,(ém) +op <n@f+/m>]

0p(01n) + 0p (ng%/m) (107)

Under our assumptions, n'/™81,, | 0 and =272/ | 0 in (106). This used in (105) along with (107) and
consistency of ¥, (z;, ap), implies that

1
rmxwm—%@n+%(;—f)

1<i< o—1/m

which yields the desired result by the definition of p, in (94). =
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B: CONVERGENCE RATES

Lemma B.1 Consider the functions Gy () and Gyn(aw) defined in (63) and (86), respectively. Assump-
tions 4.1-4.3, 4.5, 4.6, 5.1-5.6 imply: (i) Gn(an) — Gn(an) = 0p(n~Y*) uniformly over o, € Ay; and (i)
Gn(om) — Gn(aw) — {Gn(om) — Gn(ao)} = 0p(1,n %) uniformly over oy, € A, with |lan — aol|p < 0(n,,),
where n,, =n~" with 7 < 1/4.

Proof.
This Lemma shows the counterpart of AC’s Corollary B.1 for our case. Since A;(ay) solves

- Wwijg (Zjvan)
E 1
i + Njg (2, an) 0 (108)

j=1

denote by Aio(an) the solution to
& { g (fj, o)
oi + >\ig (Zj7 a")

{131:| =0

For the sake of brevity, let "VW" stand for "Van der Vaart and Wellner (1996)." Lemma A.5 and Assumption
4.5(1) suffice to satisfy the pointwise convergence condition of Lemma 3.3.5 (p. 311) in VW for the objective
function (108). Note that {g(z,an) : an € A} C AZ(X) and A7(X) is a Donsker class by Theorem 2.5.6
in VW. Since \; (an) € R%, {\i (an) : an € A,} belongs to the Donsker class. By Example 2.10.8 (p.
192) in VW {\ig (2, an) : an € Ay} is Donsker. Since 0 < 0; < oo is a data-determined scalar by Lemma
A5, by Example 2.10.9 (p. 192) in VW (108) is Donsker in a, € A,. Hence the Assumptions of Lemma
3.3.5 (p. 311) in VW are satisfied and we can invoke Theorem 3.3.1 (p. 310) in VW to conclude that
[Xi(an) — Xio(an)||z = Op(n=/?), uniformly over an, € Aj, for each i. Lemma A.1(A) of Ai and Chen
(2003) (defining 1) states that 3 7, wi;g (2, an) — m (i, an) = 0p(d1,) uniformly over X' x A,. These
two rate results for \;(an) and g (zj,an), simple law of large numbers for o; and continuity of the log
function satisfy the satisfy the pointwise convergence condition of Lemma 3.3.5 (p. 311) in VW for the
objective function Gp(an). By Theorem 2.10.6 (p. 192) in VW {In[o; + A\ig (25, an)] : an € Ay} is Donsker.
By Lemma A.5, 0 < 0; < oo for each i and thus we can renormalize o; by dividing by sup; «,;,, i that
guarantees »_ ., 0; < 1. By Theorem 2.10.3 (p. 190) in VW

o 1 n n 1 n
|Gn(an) — Gn(an)| = - Z Zwij In{oi + Nig (zj,0m)} — - ZE [In {os + Nog (2, o) } |i]
i=1j=1 i=1
= Op(nil/Q)

uniformly over ay, € A,, which shows the result () in this Lemma.

In order to show part (i7) of the proof, we first derive the counterpart of AC’s Corollary A.2 that is a
building block for their Corollary B.1 (#¢). Note that since m(X, ) = 0, ||an — aol|z = 0p(1) and AC’s
result (i.1) of the proof of their Corollary A.2 holds also for our ||m(X,a)||%, we only need to show the
counterpart of their part (:.2). We replace Assumption 3.9 of AC by our Assumption 5.1 which applies to
our metric ||-|| . This Assumption together with Lemma C.1 imply that E{|m(X,a)[%} and ||a — a0/
are (topologically) equivalent. Then by Assumptions 4.1, 5.1, and 5.3(7), we have

2
E{[lm(X,)[3]"} < B{Im(X 02} x |sup {Im(X,a)l5}| < const.x la - aoll?

satisfying part (¢.2). Part (i7) of AC’s Corollary A.2 holds for our metric ||-|| » by replacing their Assumption
3.9 with our Assumption 5.1. This, along with AC’s Corollary A.1 shows (4i). B
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C: ASYMPTOTIC NORMALITY

Lemma C.1 Under Assumptions 4.1-5.6,

dSD (X7 Z7 CM())
E |:Va7" <7dg Z.a) Dy, (Z)‘X)}
E{E[Duw(Z)Wo(Z,X) 'Duw(Z)| X]}

— p{p[puayie Lo (02l p z) x|}

Proof. Using (51) and (49)

d@ (X7 Za Oé())
dg (Z,a)

_dSO (Xa Z’ Oéo) dg(Z, Oéo) [’U*]
| dg(Z,a) do
[dp (X, Z,a0) | «
O v
[ do (X, Z,a .
_w(ue—%)ﬁ-
—dcp(X,Z,ao)
do’

E Dw*(Z)‘X} = E

]

dSD (X7 Za CMO)
dh

[ur, — ho]

x] (wi - on) + | 225 2o00)

]

[uf, — ho

¥
by the definition of . Hence

Var <7d“"d2)§’Z7Z’c§°) D (Z)‘ X) -E {Dw* (Z)’wd(;((’ziﬁo) (dsod(;((,Z’Z(;;m))Dw* (Z)‘ X}

Taking expectation over X yields the required result. m

Lemma C.2 Consider the notation for v,(-) and 7[-] defined in Appendiz 3. Then, under Assumptions
4.1-5.6,
n~ Y20, (Plan — a0, X, Y] — F[Poa™ (an, en) — a0, X, Y]) = op(n71/4)

Proof. This Lemma performs a similar function as Lemmas C.1 - C.3 in Ai and Chen (2003). By the
definition of vy, (-) and 7[],

n~ Y20, (F[a — a0, X, Y] —T[Pya” (an,en) — a0, X,Y])
— *1 ZZ Wij {T[C\Cn - aovxlvyj] ~[P « (a‘”)gn) - aoax’bay]]}
< —EA{rlan — a0, X, Y] — F[Pra”(an,en) — a0, X, Y]}
i=1 j=
= A1 —A

n n
n_l ZZU)UF[(X»” — Ozo,fL’q',,yj] — EF[Oén - aO»Xv Y}

A =
i=1 j—1
Ay = n7t Z ZU}ij:F[Oén + enluy, — Qo, Ti, yj] — ET[an + epup, — ao, X, Y]
i=1j—1
Al = An— A
A = 7Y S wie (w25, 0) — Be (2,3,0)
i—1 j—1
Ay = iiw $172]:a0)[a_a0]_E d@(xvzaao)[a_ao}
=1 j=1 K do
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As = Ao — Ax

Ay = nt Z Zwijnp (z, 2,00 + €nup) — Ep (z, 2,00 + €nuy,)
i=1j=1
A dp (x4, 25, Qo " dp (x,z,a «
Agpy = nt ;;wzj@(da])[an + enuy, —ap) — E {%[an + enty, — ao]}

The goal is to show A1 — Aia — Aa1 + Azg = Op(e2) = op(n~*). Note that A1 = o,(n~ /%) and
As1 = 0,(n~%) follows from parts A and B of AC’s Lemma A.1. Az = op(n~ /%) and Ass = 0,(n"/%)
follows from the rate results for Ai; and As1, respectively, and the continuous mapping theorem. m
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Appendix 3

In this Appendix we extend Theorem 1 of Shen (1997) to our conditional case.'” Consider the setup as in
Shen (1997), with the following modifications. Suppose that the observations {(X;,Y;) : 4,5 = 1,...,n} are
drawn independently distributed according to density p(wo, Xi, Y;).
Define
K(O&o, a) = E‘ol(Olo7 Xq',7 Y]) - Eol(oz, Xi, Y})

Let the empirical criterion be

Ly(a)=n"" zn:zn:wijl(a,)(i,Yj)

i=1 j=1

where [(o,Y;, X;) is the criterion based on a single observation. Consider I(a, x,y) for which (analog of
Shen’s (4.1))

F[a — @, T, y] = l(a5x7y) - l(a05x7y) - l/ao [Oé - ao,m,y] (S 41)

where [, [a@ — ao, z, y] is defined as limy—o[l(a + t{a — o), z,y) — {(e0, 7, y)]/¢t. Denote &, the maximizer of
L, (ar) over ay, € A,. We estimate a real functional of @, denoted as f(a). With @, as defined, f(«) is
estimated by a substitution estimate f(ay). By the definition of &y, we have (analog of Shen’s (2.1))

Ln(Gn) > sup Ly(an) — O(e2) (S 21)
aEAy,

where €2 — 0 as n — oco. For any generic function g(X,Y") let

uam—W*ZM“{E)wm&Jw—EMXXNX—m}

=1

be the empirical process induced by g. Let the convergence rate of the sieve estimate under [|-|| be 0,(d5)
and let €2 = 0,(n"'/?).
The following conditions are modified versions of Shen’s 1997 (p. 2568) conditions:

Condition A (Stochastic Equicontinuity) For ¥la — ao,z,y] defined in (S 4.1),

sup n_1/21/n (Floan — a0, X, Y] = Flan + €nuy — a0, X, Y]) = Op(ai)
{an€An:|lan—apl|<én}

Condition B (Expectation of Criterion Difference)

* 1 *
sup (K (0, @ + €)= K (a0, 00)] = 5 [llan + 20" = a0l = [l = ao]]?] = 0,(%)

{an€Anillan—aol|<én} 2
Condition C (Approximation Error)

sup lenu”™ — enunll = Op(8y ' eh)
{an€Apn:llan—agl|<én}

In addition,
sup Y%, (l;[J [enu” —enun, X, Y]) = Op(ei)
{an€An:llan—aol||<dn}

Condition D (Gradient)

sup n~1/2

{an€An:llan—aoll<én}

Un (lim [0‘" —ao, X, Y]) = OP(E")

Condition E (Smoothness)
Suppose the functional f has the following smoothness property: for any can € An

| fan = fao = faglan — ao]| < tn [l — aollf (S 4.2)

10Measurability with respect to the underlying probability space is assumed throughout the paper and hence we do
not distiguish outer expectation from the usual one.
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as ||an — aol|p — 0 where w is the degree of smoothness of f&o [an — 0] at ap.

Condition F (Convergence Rates and Smoothness) u,0% = O,(n"'/?).
Condition G (Variance) Var (I,,[v*, X,Y]) < oo is positive definite for all X € X, y € Y.

Theorem 7.1 Let the Conditions A-G hold. Then for the approximate substitution sieve estimate defined
in (8 2.1),
n 2 (f(@n) — fa0) = N(0, B [Var (I, [v", Y]) 1X])

Proof of Theorem 7.1. Rearrange (S 4.1) as
l(O[, z, y) = F[OC — o, T, y] + l(Of(), x, y) + l/ao [CY — Q, T, y}
Subtract from (S 4.1) its expectation (under P(6o, X;,Y;) denoted by Ejy), for a given (X;,Y;) to obtain

l(OQ -Ti7yj) - Eol(a, Ty yj) = l(OQ -Ti7yj) - Eol(a, Ty yj)
—&—l;o [ — ao, x4, y5] — Eolgo [ — o, x4, Y]

+’F[a - Oé07xi7y]'} - EO’F[O‘ - a07xi7yj}
rearrange
l(CM, xlay]) = l(Of,.’L'Z‘,yj) - [E()l(Of,.’L'i,yj) - EOZ(CM, xlay])]

ool — a0, 21, Y] — Eola, [ — ao, i, 5]

+7la — ao, x4, y5] — EoTla — ao, T4, y;]
take a weighted average over ¢, j with weights wy;

nilszijl(a»ﬂCi,yj) = ”7122101‘3‘1(@0’@%%)

i=1 j=1 i=1 j=1

—n VSN wy [Bol(ao, 2, y;) — Eol(a, 2, )]

i=1 j=1

+n Y Y wiy (lagla — a0, @i, yj] — Eolo, [ — a0, i, y5])

i=1 j=1

07ty N " wiy (Flo — a0, @i, 5] — Eola — ao, @i, y5))

i=1 j=1

and hence using the notation above, for any Pn,an € {Pran € An @ ||Pran — aol] < 0n}, we have

Ln(Pran) = Lp(ao) — K(ao, Pran)
—&—n*l/Zun(léo [Pran — a0, X, Y])
+n_1/2un(T[Pnan —ap, X, Y]) (S9.1)
Substituting P, by @, here above, we obtain
La(@n) = La(ao) — K(ao,dn)
+7’L71/2Un(l/90 [an — Qo, X> Y])
+n 20 (r[Gn — a0, X, Y]) (S 9.2)
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Subtracting (S 9.2) from (S 9.1) and substituting a, by a*(Qn,ex) in (S 9.1), we have

Ln(Pua* (G, €n)) — Ln(ain)
= Lnp(ao) — Ln(ao)
—K (0o, Pra™(an,en) + K(ao, an)
0720 (1 [Pa@” (@n, e0) — a0, X, Y]) = 07 20, (I, [@n — a0, X, Y))
+n7 Y20, (r[Pa (Qn, en) — 0, X, Y]) — 0 Y20, (r[Gn — a0, X, Y))

which yields

Ln(@n) = Ln(Puo(@n,en))
— [K (a0, @n) — K (00, Pac* (Gin, en)]
+n7 20 (1[G — Paa® (@n,en), X, Y))
+n71/2un(r[an — Pya”(Qn,en), X, Y))

By Condition A (second line of the following)

n 20, (r[Pact (@n, £n) — a0, X, Y]) — 0720, (r[ain — a0, X, Y])
= n71/2V7L(r[an — Pya™(Qn,en), X,Y])
= Op(si)

Using Condition B on the difference in Ks, we obtain

~ *(& 1 Q (@
Ln(an) — L7L(P7La (Oh“an)) - 5 |:H06n - 0(0“2 — HPnOé (Oévufn) - 0&0”2]
+n_1/2yn(l;0 [an _ Pna*(an,€n),X7 Y])

+OP(‘L:i)
By Condition C (applicable to the second line)
1Pne (@nsen) — & (@n,n) ]| = 06, €7)

Hence, using (S 2.1) we have

17, %/~
—0(%) < =3 [Ian = aoll® = | Pua’ (@ns0) = o]
+n 20 (I [@n — o™ (@n, en), X, Y])
+OP(831)
We will use the relation
Qn — " (Qn,en) = Qn — Qn+Enln —Ext™ — Enag

= —&n (v = (@ — o))

in vn (I, [@n — & (@Qn, en), X, Y]) to get —vn(l,[en (W — (Gn — ao)), X, Y]).
In (S 9.3) we have
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1Paa”(@n,en) = aol® = [|Pua”(@n,en) = @ (@n,en) + " (@n,n) — bl

|1Pac” (@n, en) = @ (@n, £n) + (1 = £0)(@n — a0) + enu’|?
[(1 = en)(@n — ao)ll [ Pae” (@n,en) — & (@n, n) + enu’||
(1 = &n)(@n — ao)ll [ Pra” (@n, en) — a” (@n, n)|

+ 111 = &n)(@n — o)l lenu|]

(1 —en) [[(@n — o) || [|1Poc™(@n,en) — @ (@n, €n)l

+(1 — &) (Qn — a0, enu™)

INIA

We multiply ||a, — aol| by the factor

1-(1—e,)? = 1-(1—2,+¢e2)

= 2, — Ei
which is a positive fraction that preserves the inequality. We also multiply || Pna*(@n,en) — 6o]|* by 2 which
also preserves the inequality. Hence we obtain

_0(2) < —% [1— (1 —en)?] [@n — aoll
+(1 = en) [[(@n — o)l | Prna” (Gn, en) — & (@n, €n)||
+(1 — &) (Qn — a0, enu™)

=02 (U [en (" = (@0 — @0)), X, Y])

Adding e, |[(@n — @) || | Pac® (@n,en) — a*(@n, n) || still preserves the inequality. For the first line, 2 ||an — aol|® =
O,(£2). Hence

—0(er) < —enl[@n — a0l + (@ — o) | [Pac (@ns£n) — @ (@n, n) |
+(1 = &) (@n — a0, e0tt”) = 1720 (Il [en (U™ = (@0 — a0)), X, Y]) + Op(er)

Note that

—enll@n —aol® = Oplen)op(6?)
= Op(éz)

By Condition C
1Pne” (@nyen) = @ (@nsen)|| = Op(6 ")

since
[an — aol| = 0,(9)

then

[@n — aoll [|Paa” (@n,en) = " (@n,en)| = 0p(6)0p(6"€n)

= Op(si)
and using Conditions C and D
0l len (W = (@n — a0)), X, Y]) = 0 2o (ll, [u”, X, Y]) + Op(eh) + Op(eh)

Hence
—(1 = &) (@n — a0,u™) + 020, (lh, U™, X, Y]) = 0,(n~*/?) (S 9.4)

This gives, together with the inequality in (S 9.4) with u* replaced by —u”,

<an — Q, u*> - n_l/QVn(l;g [U*7X7 Y]) = Op(n_l/g)
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SO
(@n — a0, v™) = n 20, (1L, v, X, Y]) + op(n~"/?)

Hence, by (S 4.2)
fan = fao = fholan — ao] + op(un [|an — acll})

= (@ —a0,0") +0p(n" 1)

0 0 (U (0™, X, Y]) + 0p(n™?)

n n
nt an/z {Zw“l;o[u*,Xi,Yj] —FE [l;o[u*,X, Y]| X = xz]}
i—1

j=1

The result then follows from the Central Limit Theorem (CLT) for triangular arrays (Proposition) in
Andrews (1994, p. 2251). Note that the conditions of the Proposition are satisfied under our assump-
tions. In particular, © C R% is compact, finite-dimensional convergence of n'/? 22:1 Wigle, [u*, X5, Y;] —
E[l,,[u*, X,Y]| X = z;] holds for each z; due to the classical Lindeberg-Levy CLT, and Condition A satisfies
the stochastic equicontinuity requirement of the Proposition.

|
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