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ABSTRACT

The existing parametric multivariate generalized autoregressive conditional heteroskedas-

ticity (MGARCH) model could hardly capture the nonlinearity and the non-normality, which

are widely observed in financial data. We propose semiparametric conditional covariance

(SCC) model to capture the information hidden in the standardized residuals and missed

by the parametric MGARCH models. Our two-stage SCC estimator incorporates the para-

metric and nonparametric estimators of the conditional covariance in a multiplicative way.

We prove the consistency and asymptotic normality of our semiparametric estimator. We

conduct a small set of Monte Carlo experiments to demonstrate the advantage of our SCC

estimators over their parametric counterparts in terms of mean squared error. For both in-

sample fitting and out-of-sample forecasting conditional covariance matrix, our SCC models

also outperform the parametric ones in empirical applications on bivariate stock indices and

two stock portfolios with thirty underlying stocks.

JEL Classifications: C3; C5; G0

Key Words: Conditional Covariance Matrix, Multivariate GARCH, Nadaraya-Watson

Estimator, Portfolio, Semiparametric Estimator.
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1 INTRODUCTION

Since the seminal work of Engle (1982), there has developed a huge literature on modeling

the time-varying volatility of economic data in univariate case. Nevertheless, for asset allo-

cation, risk management, hedging and asset pricing, multivariate generalized autoregressive

conditional heteroskedasticity (MGARCH) models are of more importance both theoreti-

cally and practically because they model the volatility and co-volatility of multiple financial

assets jointly. Many recent works have been done in the area of MGARCH models, such as

the VECH model of Bollerslev, Engle and Wooldridge (1988), the BEKK model of Baba,

Engle, Kraft and Kroner (1991) and Engle and Kroner (1995), the dynamic conditional cor-

relation (DCC) model of Engle (2002) and Engle and Sheppard (2001), the Factor GARCH

model of Engle, Ng and Rothschild (1990), to name just a few. However, all these existing

MGARCH models including the DCC model share two common features: the normality

assumption on the error’s distribution and the linearity of dynamic conditional covariance

matrix. The exceptions include the regime switching dynamic conditional correlation model

of Pelletier (2006), the smooth transition conditional correlation (STCC) model by Silven-

noinen and Teräsvirta (2005), and the asymmetric dynamic conditional correlation model

by Capiello, Engle and Sheppard (2003), where parametric nonlinear conditional correla-

tion models are used with Gaussian errors, and the copula-based MGARCH model by Lee

and Long (2004), where copula is used to construct non-Gaussian errors. The normality

assumption is rejected by Fama and French (1993), Richardson and Smith (1993), Longin

and Solnik (2001), Ang and Chen (2002), Mashal and Zeevi (2002), and Chen, Fan and

Patton (2004). The linear dynamic assumption excludes possible nonlinearity. Once we

diverge from linearity, there is too much freedom to specify nonlinearity.

If the parametric model is misspecified in either the joint density function or the func-

tional form of the conditional covariance matrix, parametric estimators of conditional co-

variance will often be inconsistent. Fortunately, such misspecifications could be avoided

by nonparametric estimation techniques because of their ability to capture the unknown

nonlinearity. Nevertheless, pure nonparametric estimates are subject to the “curse of di-

mensionality” and have slow convergence rates.

In this paper, we propose a semiparametric conditional covariance (SCC) model, which

combines parametric and nonparametric estimators of conditional covariance matrix in a
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multiplicative way. We first model the conditional covariance matrix parametrically just

like what we do for the conventional parametric MGARCH models. Then we model the

conditional covariance of the standardized residual nonparametrically. The estimate of

the latter will serve as a nonparametric correction factor for the parametric conditional

covariance (PCC) estimator. As surveyed by Mishra, Su and Ullah (2005), a lot of work has

been done in the framework of combined estimation: Olkin and Speigelman (1987) in the

density function; Glad (1998) and Fan and Ullah (1999) in the conditional mean; Gozalo

and Linton (2000) in the conditional heteroskedasticity; and Engle and Gonzalez-Rivera

(1991) in the likelihood function, among others. Nevertheless, to the best of our knowledge,

there is no combined estimator of conditional covariance matrix.

We provide asymptotic theory for our semiparametric estimator. It possesses several

advantages over both pure parametric and nonparametric estimators. First, our SCC model

avoids the common shortcomings of parametric MGARCH models on potential misspecifi-

cations of functional form and density function. It does not rely on either the distributional

assumption on the error term or the parametric functional form of the conditional covari-

ance matrix. Second, when the parametric model is misspecified, the parametric estimator

of the conditional covariance is generally inconsistent despite the fact that the finite dimen-

sional parameter in the parametric model may converge to some pseudo-true parameter (see

White, 1994). In contrast, our semiparametric estimator can still be consistent with the true

conditional covariance matrix under certain conditions. Third, when the parametric model

is correctly specified, as expected, our semiparametric estimator is less efficient than the

parametric estimator but it can achieve the parametric convergence rate with a fixed band-

width. Fourth, even though not pursued in this paper, our estimator for the nonparametric

correction factor can serves as a basis for the test of correct specification for the PCC model.

We report a small set of Monte Carlo simulation results motivated by the stylized fact

that conditional correlation tends to be high during the crisis period and low during the

tranquil period. We examine the small sample performance of various PCC and SCC models

in terms of mean squared error (MSE). We find that our semiparametric estimators can beat

their parametric counterparts in all DGPs under examination. We also apply our strategy to

do in-sample (IS) estimating and out-of-sample (OoS) forecasting the conditional covariance
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matrix of two stock market indices and two stock portfolios with thirty underlying stocks1.

We consider two types of loss functions, one is the statistical loss function (MSE) and

the other is the economic loss function (VaR loss). Again, we find that both of our SCC

estimators and forecasters always outperform their parametric counterparts significantly,

including the DCC model of Engle (2002).

The rest of the paper is organized as follows. We briefly review some PCC models in

Section 2. We present our alternative SCC model and study its asymptotic properties in

Section 3. In Section 4 we provide a small set of Monte Carlo experiments and three empirical

applications to evaluate the finite sample performance of our SCC models in comparison

with some widely used PCC models. We make some concluding remarks in Section 5. All

proofs are relegated to the Appendix.

To proceed, we define some notation that will be used throughout the paper. Let Ik

denote a k× k identity matrix. Let z =(z1, ..., zk)
0 be a k× 1 vector and Z be a symmetric

k × k matrix with (i, j)th element zij . The Euclidean norm of z or Z is denoted as kzk or
kZk .We define the following operators: diag(Z) denotes the diagonal matrix with zi in the
(i, i)th place; Z∗ denotes a diagonal matrix with the square roots of the diagonal elements

of Z on its diagonal when Z is positive definite; vec(Z) stacks the columns of Z into a k2×1
vector; vech(Z) stacks the lower triangular part of Z (including the diagonal elements) into a

k (k + 1) /2×1 vector. Further, we useDk to denote the k
2×(k (k + 1) /2) unique duplication

matrix and D+
k to denote its generalized inverse, which is of size (k (k + 1) /2) × k2. That

is, vec(Z) = Dkvech(Z) , vech(Z) = D+
k vec(Z) , D

+
k = (D

0
kDk)

−1D0
k and D

+
k Dk = Ik(k+1)/2.

Here we have used the fact that D0
kDk is nonsingular. For more details, see Magnus and

Neudecker (1999, pp. 48-49).

2 PARAMETRIC CONDITIONAL COVARIANCE MOD-

ELS

Suppose the return series {rt}Tt=1 of the interested financial data follows the stochastic
process:

rt|Ft−1 ∼ P(μt,Ht; θ), t = 1, ..., T, (2.1)

1We could apply our method to higher-dimensional portfolio, however, PC’s memory card is a constraint.
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where rt ≡ (r1,t, . . . , rk,t)0 is an k × 1 vector, Ft−1 is the information set (σ−field) at time
t− 1, E(rt|Ft−1) = μt, E(rtr

0
t|Ft−1) = Ht, Ht is the conditional covariance matrix, and P

is the joint cumulative distribution function (CDF) of rt, and θ represents the parameters

in the distribution. Like Engle (2002), for simplicity we assume the conditional mean μt is

zero. If not, necessary standardization should be applied on the data. Thus we can write

the model for rt as

rt = H
1/2
t et, (2.2)

where et ≡ H−1/2t rt is the standardized error with E(et|Ft−1) = 0 and E(ete
0
t|Ft−1) = Ik.

et is typically assumed to follow the standard normal distribution: et ∼ i.i.d. N(0, Ik).

We are interested in estimating the conditional covariance matrix Ht of rt without such a

distributional assumption.

The conditional covariance matrix Ht can be decomposed as

Ht = Dt (θ)Rt (θ)Dt (θ) , (2.3)

where Rt (θ) is the conditional correlation matrix with the (i, j)th element denoted as

ρij,t (θ) , which stands for the conditional correlation between ri,t and rj,t and can be time-

varying; Dt (θ) =diag(
p
h1,t, ...,

p
hk,t) is a diagonal matrix with the square root of the

conditional variances hi,t, parameterized by the vector θ, on the diagonal. It is well known

(see e.g., Engle, 2002) that the conditional correlation matrix Rt (θ) is also the conditional

covariance matrix of the standardized returns εt ≡ (ε1,t, . . . , εk,t)0 = D−1t (θ) rt, that is

E(εtε
0
t|Ft−1) = Rt (θ) . (2.4)

Now we review some existing parametric models for the conditional covariance matrix

Ht, which belong to the class of multivariate GARCH models. These models stem from two

different modeling methodologies.

First, both the VECH model by Bollerslev, Engle and Wooldridge (1988) and the BEKK

model by Bara, Engle, Kraft and Kroner (1990) and Engle and Kroner (1995) consider

modeling the elements of Ht directly. The VECH model specifies the dynamics of Ht as

vech(Ht) = ω +Σpi=1Aivech(εt−iε0t−i) +Σ
q
j=1Bjvech(Ht−j), (2.5)
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where ω is a k(k + 1)/2 × 1 vector, Ai and Bj are k(k + 1)/2 × k(k + 1)/2 matrices. In

contrast, the BEKK model specifies Ht as

Ht= δδ0+Σpi=1Ai

¡
rt−ir0t−i

¢
A
0
i +Σ

q
j=1BjHt−jB

0
j , (2.6)

where δ is a k× k low-triangle matrix, and different matrix properties of Ai and Bj lead to

three types of BEKK models: Ai and Bj in full BEKK model, diagonal BEKK model, and

scalar BEKK model are full matrix, diagonal matrix, and scalar, respectively.

Second, instead of modeling the conditional covariance matrix directly, some researchers

observe Ht= DtRtDt in (2.3) and model Ht indirectly through modeling Dt and Rt sep-

arately. The resulting models include the CCC model by Bollerslev (1990), the VC model

by Tse and Tsui (2002), the DCC model by Engle (2002) and Engle and Sheppard (2001),

among others.

(1) The CCCmodel assumes thatRt = R, a constant matrix, and hence the time-varying

feature of conditional covariance could only be attributed to the time-varying conditional

variances. Nevertheless, Longin and Solinik (2001), Ang and Chen (2002), and Andersen,

Bollerslev, Diebold and Labys (1999) indicate asymmetric phenomena in conditional corre-

lation, that is, high correlation tends to be associated with high volatility or crisis period

and low correlation tends to be associated with low volatility or tranquil period. The CCC

model is thus defaulted and many researchers turn to time-varying conditional correlation,

such as the VC and DCC models.

(2) The VC model by Tse and Tsui (2002) specifies univariate GARCH(p, q) models for

individual return rit :

hi,t = ωi +Σ
p
l=1κl,ihi,t−l +Σ

q
l=1λl,ir

2
i,t−l, (2.7)

and GARCH-type dynamic evolutions for the conditional correlation process {Rt}:

Rt =
¡
1− Σmi=1βi − Σnj=1γj

¢
R̄+Σmi=1βiRt−i +Σnj=1γj bRt−j , (2.8)

where R̄, Rt, and bRt are the unconditional, conditional, and sample correlation matrices at

time t with unit diagonal elements; the off-diagonal elements bρij,t of bRt is

bρrs,t = PM
l=1 εr,t−lεs,t−lq

(
PM

l=1 ε
2
r,t−l)(

PM
l=1 ε

2
s,t−l)

; (2.9)
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the off-diagonal elements of R̄ lie on the interval (−1, 1); and to guarantee the positiveness ofbRt, M should not be less than k. Conditional covariance inherits the time-varying property

from both the conditional variances and the conditional correlations.

(3) Similar to the CCC and VC models, the DCC model by Engle (2002) and Engle and

Sheppard (2001) also uses two-stage modeling strategy. In the first stage, one models the

conditional variance processes with the usual univariate GARCH models and then obtains

the standardized residual ε̂t. In the second stage, one models the conditional covariance Qt

of εt as

Qt =
¡
1− Σmi=1βi − Σnj=1γj

¢
Q̄+Σmi=1βi(bεt−ibε0t−i) + Σnj=1γjQt−j , (2.10)

where Q̄ is the sample covariance matrix for ε̂t, βi > 0, γj > 0, and Σmi=1βi + Σ
n
j=1γj < 1.

The basic properties of correlation matrix, such as positive definiteness and unit diagonal

element, are ensured by using the transformation

Rt = Q
∗−1
t QtQ

∗−1
t (2.11)

where Q∗t is a diagonal matrix with the square roots of the diagonal elements of Qt on its

diagonal. Due to its simplicity, the DCC model is flexible for high-dimensional system.

(4) Other specifications for Rt are also available. For example, Pelletier (2006) develops

a Markov-Switching conditional correlation model that allows the conditional correlation to

switch between m distinct values by assuming that

Rt = Rst , (2.12)

where St is an unobservable first-order Markov process withm states with P (St = j|St−1 = i)

= pij , i, j = 1, . . . ,m, as the transition probabilities. However, noting that correlation tar-

geting (substituting unconditional correlation by sample correlation) is not possible in this

case, one has to estimate mk (k − 1) /2 + (m− 1) parameters in the second step. Silven-
noinen and Teräsvirta (2005) consider STCC model,

Rt = R1 (1− F (xt; δ, λ)) +R2F (xt; δ, λ) , (2.13)

F (xt; δ, λ) = (1 + exp (−δ (xt − λ)))−1 , say, (2.14)

where R1 and R2 are positive definite correlation matrices, xt is a scalar transition variable

that belongs to the information set Ft−1 and δ determines the smoothness of F (·) as xt
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increases. A crucial element of the STCC is the choice of xt, which could be taken as

the standardized lagged return or market volatility. Correlation targeting is not possible

in this stage either, and the estimation can be carried out iteratively by concentrating the

likelihood.

In addition to the above two classes of methodologies, there are some other models,

where Ht is indirectly studied, such as the Orthogonal GARCH (O-GARCH) or princi-

pal components GARCH method by Ding (1994), Alexander (1998, 2001), and the Factor

GARCH model of Engle, Ng and Rothschild (1990), where some factors driving the economy

or the market are considered.

In the existing parametric models given above, the functional form of covariance matrix

are assumed to be of known linear or nonlinear form and the maximum likelihood esti-

mation is done under the assumption of normality. In the next section, we present our

semiparametric estimation of the conditional covariance matrix which requires neither.

3 ANALTERNATICE SEMIPARAMETRIC CONDITIONAL

COVARIANCE ESTIMATOR

In this section we first introduce briefly the semiparametric estimator of Hafner, Dijk and

Franses (2006, HDF hereafter) and propose an alternative semiparametric estimator for

conditional covariance matrix.

3.1 HDF’s Semiparametric Estimator

Motivated by the idea that the conditional correlations depend on exogenous factors such

as the market return or volatility, HDF propose the following semiparametric model for rt :

rt = Dt (θ) εt, E (εt|Ft−1) = 0, E
¡
εtε

0
t|Ft−1,xt

¢
= R (xt) , (3.1)

whereDt (θ) is as defined before (after (2.3)), and xt is observable at time t−1 and xt ∈ Ft−1.
Assuming that θ can be estimated by bθ at the parametric √T -rate, they define standardized
residuals by eεt ≡ εt(bθ) = Dt(bθ)−1rt. Then they regress eεteε0t on xt nonparametrically to ob-
tain eQ (x) , the Nadaraya-Watson kernel estimator of E ¡eεteε0t|xt = x

¢
. Their semiparametric
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conditional correlation matrix estimator is defined by

eR (x) = (eQ∗ (x))−1 eQ (x) (eQ∗ (x))−1, (3.2)

where eQ∗ (x) is a diagonal matrix with the square roots of the diagonal elements of eQ (x)
on its diagonal. Their semiparametric estimator of Ht can be written as follows

eHt = Dt(bθ)eR (xt)Dt(bθ). (3.3)

Clearly, the HDF’s estimators require correct specification of the conditional variance

process in order to obtain a final consistent conditional correlation or covariance estimator.

This is unsatisfactory since it is extremely hard to know a prior the correct form of the

conditional variance process. Below we propose an alternative SCC estimator that can be

consistent even if the conditional variance process may be misspecified in the first stage and

it requires similar assumption to that in (3.1).

3.2 An Alternative Semiparametric Estimator

Motivated by Glad (1998) and Mishra, Su, and Ullah (2005), we propose an alternative SCC

estimator, which combines in a multiplicative way the parametric conditional covariance

estimator from the first stage with the nonparametric conditional covariance estimator

from the second stage. Essentially, this estimator nonparametrically adjusts the initial PCC

estimator.

Let {Ht = E (rtr
0
t|Ft−1)} be the true time-varying conditional covariance process:

rt = H
1/2
t et, E (et|Ft−1) = 0, E

¡
ete

0
t|Ft−1

¢
= Ik, (3.4)

where H
1/2
t is the symmetric square root matrix of Ht. Let {Hp,t (θ)} be a parametrically-

specified time-varying conditional covariance process for rt, where θ ∈ Θ ⊂ Rp andHp,t (θ) ∈
Ft−1. Analogous to Mishra, Su, and Ullah (2005), our estimation strategy builds on the

simple identity

Ht = Hp,t (θ)
1/2E

£
et (θ) et (θ)

0 |Ft−1
¤
Hp,t (θ)

1/2 , (3.5)

whereHp,t (θ)
1/2 is the symmetric square root matrix ofHp,t (θ) , and et (θ) = Hp,t (θ)

−1/2 rt
is the standardized error from the parametric model. When θ = θ∗, some pseudo-true

parameter value, we write Hp,t = Hp,t (θ∗) and et = et (θ∗) . It is clear that the parametric

9



component Hp,t (θ) in (3.5) can be any PCC model reviewed in Section 2 and estimated by

some standard parametric method. To propose a reasonable estimator for the nonparametric

component E
£
et (θ) et (θ)

0 |Ft−1
¤
, we follow the HDF’s idea and assume that the conditional

expectation of ete
0
t depends on the current information set Ft−1 only through a q × 1

observable vector xt = (x1t, ..., xqt)
0 . That is,

E
£
ete

0
t|Ft−1,xt

¤
= Hnp (xt) , (3.6)

where xt ∈ Ft−1. There is a fundamental difference between (3.6) and the last expression

in (3.1). In order for R (xt) in (3.1) to be a conditional correlation matrix, the conditional

variance matrix or equivalently {Dt (θ)} has to be specified correctly. Fortunately there is
no such a requirement for our definition of Hnp (xt) .

Let Hnp,t =Hnp (xt) . (3.5) then reduces to

Ht = H
1/2
p,t Hnp,tH

1/2
p,t . (3.7)

Based upon (3.5)-(3.7), we can estimate Ht in two stages:

Stage 1: Estimate the parameter θ by bθ in the parametric specification {Hp,t (θ)} for the
conditional covariance process. Define the standardized residuals by bet = bH−1/2p,t rt, wherebHp,t = Hp,t(bθ).

Stage 2: Estimate E [ete
0
t|Ft−1,xt = x] nonparametrically by

bHnp (x) =

Pn
s=1 besbe0sKh(xs − x)Pn

s=1Kh(xs − x) , (3.8)

where

Kh (xs − x) =
Yq

l=1
h−1l k

µ
xls − xl

hl

¶
h = (h1, ..., hq) , hl = hl (T ), l = 1, ..., q, are bandwidth parameters, and k is a kernel

function. Let bHnp,t = bHnp (xt) . Then our SCC estimator of Ht is obtained as

bHsp,t = bH1/2
p,t
bHnp,t

bH1/2
p,t . (3.9)

Correspondingly, the estimator of conditional correlation matrix from our SCC model is

bRsp,t =
³bH∗

sp,t

´−1 bHsp,t

³bH∗
sp,t

´−1
, (3.10)

where bH∗
sp,t is a diagonal matrix with the square roots of the diagonal elements of

bHsp,t on

its diagonal.
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To proceed, we make a few remarks.

Remark 1. When k = 1, bHsp,t reduces to the semiparametric estimator of conditional

variance in the spirit of Mishra, Su and Ullah (2005) who use local polynomial estimation

technique instead.

Remark 2. When the parametric model Hp,t is correctly specified, i.e., Hp,t (θ0) = Ht

for some θ0 ∈ Θ and θ0 = θ∗, we have:

Hnp (xt) = E
£
ete

0
t|Ft−1,xt

¤
= Ik.

In this case, bHnp,t is estimating the k × k identity matrix. On the other hand, if the

parametric model Hp,t is misspecified, Hnp (xt) will not be an identity matrix, and bHnp,t

will serve as an nonparametric correction factor, which nonparametrically adjusts the initial

PCC estimator. In the special case where Hp,t (θ) = Ik for all θ, bHnp,t is estimating the

conditional covariance matrix of rt given xt nonparametrically.

Remark 3. Our SCC estimator is quite different from that of HDF. In the special case

where bH1/2
p,t = Dt(bθ), then bHnp,t is the same as eQ (xt) obtained by HDF. So

bHsp,t = Dt(bθ)eQ (xt)Dt(bθ).
We can show that bHsp,t is asymptotically equivalent to eHt = Dt(bθ)(eQ∗ (xt))

−1 eQ (xt)
(eQ∗ (xt))

−1Dt(bθ). Otherwise bHnp,t is not equal to eQ (xt), bHsp,t and eHt may have quite

different properties in both large and small samples. If the parametric models (Hp,t (θ)

in our case and Dt(θ) in HDF’s case) are misspecified, our estimator for the conditional

covariance matrix is still consistent under weak conditions while that of HDF is generally

inconsistent.

Remark 4. In the above analysis, we assume xt is observable. It turns out this is not

necessary. In fact, we can allow xt to be estimated from the data at a certain rate. See

Mishra, Su, and Ullah (2005).

Remark 5. There are some alternatives to obtain the semiparametric estimators. For

example, instead of using the Nadaraya-Watson (local constant) estimator, one can obtain

the local polynomial estimator (e.g., Fan and Gijbels, 1996; Pagan and Ullah, 1999).
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3.3 Asymptotic Properties of Our SCC Estimator

To study the asymptotic property of our SCC estimator, we make the following set of

assumptions.

Assumption

(A1) The strictly stationary process {rt,xt} is α-mixing with mixing coefficients α (j) sat-
isfying

P∞
j=1 j

aα (j)δ/(δ+2) <∞ for some δ > 0 and a > δ/ (δ + 2) . Also, E
³
krtk2(2+δ)

´
<

∞ and E
³
kxtk2+δ)

´
<∞.

(A2) The pseudo-true parameter θ∗ ∈ Θ ⊂ Rp governing the PCC process {Hp,t (θ)}
exists uniquely and lies in the interior of a compact set Θ.

(A3) bθ − θ∗ = OP (T
−1/2).

(A4) Hp,t = Hp,t (θ∗) is symmetric, finite, and positive definite for each t. The process

{et = H−1/2p,t rt} is strictly stationary and α-mixing with mixing coefficients α (j). xt has a

continuous density f(x) that is bounded away from zero at x.

(A5) Let Hp,t (θ) has continuous derivatives in the neighborhood of θ∗. Hnp(x) have two

continuous derivatives in the neighborhood of x. For some � > 0, sup{θ:kθ−θ∗k≤�} kξt (θ)k
≤ Dt, where ξt (θ) = ∂et (θ) /∂θ

0 and E(D
2
t ) <∞.

(A6) Let μij =
R
uik (u)j du. The kernel k (.) is a symmetric bounded density function

such that μ21 <∞ and |uk (u)|→ 0 as |u|→∞.

(A7) As T →∞, hj → 0, Th!→∞, and limT khk4 h! = c ∈ [0,∞), where h! = Πqj=1hj .
Assumption A1 is a high-level assumption. When the individual return series follows a

GARCH(1,1) process, HDF shows that the α-mixing of {rt} can be satisfied under weak
conditions. Assumptions A2-A3 do not require the correct specification for modeling the

parametric component. For example, whether the parametric model is true or not, under

some regularity conditions for quasi maximum likelihood estimation QMLE, the pseudo true

parameter θ∗ exists uniquely (White, 1994, Ch.2) and can be estimated consistently at the

regular
√
T rate (White, 1994, Ch.6). Assumptions 4-5 impose some regularity conditions

on the {Hp,t (θ)} process. Assumptions A6-A7 are standard in the nonparametric kernel
estimation literature.

The following theorem establishes the asymptotic property of bHnp (x) .
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Theorem 3.1 Under Assumptions A1-A7,

√
Th!

n
vech( bHnp (x))− vech(Hnp (x))−B (x)

o
d→ N

¡
0, μq02f(x)

−1Ω (x)
¢
, (3.11)

where Ω (x) = (ωij,lm (x)) is a square matrix with k (k + 1) /2 columns and rows,

ωij,lm (x) = Cov
¡
(ij,t, (lm,t|xt = x

¢
with (ij,t = eitejt,

B (x) = (Bij (x)) , and

Bij (x) =
μ21
2f (x)

qX
l=1

∙
2
∂f (x)

∂xl

∂Hnp,ij (x)

∂xl
+ f (x)

∂2Hnp,ij (x)

∂xl∂xl

¸
h2l ,

where eit is the ith element of et and Hnp,ij (x) is the (i, j)th element of Hnp (x) .

Remark 6. Theorem 3.1 implies that we can estimate Hnp (x) consistently by bHnp (x) ,

which has the usual asymptotic bias and variance structure as typical local constant esti-

mators. Let ηt =vech(ete
0
t). We can get an alternative expression for Ω (x) :

Ω (x) = Var (ηt|xt = x) .

Remark 7. When the start-up PCC model is correctly specified, i.e., Ht = Hp,t (θ∗) ,

we have: Hnp (x) = Ik, the asymptotic bias term in (3.11) vanishes (B (x) = 0), and

Ω (x) =Var(vech(ete
0
t)|xt = x) .

The asymptotic property of our semiparametric estimator for the conditional covariance

matrix Ht is stated in the following corollary.

Corollary 3.2 (i) For any xt such that f (xt) is bounded away from 0, bHsp,t and bRsp,t are

consistent for Ht and Rt, respectively. That is,

bHsp,t = bH1/2
p,t
bHnp,t

bH1/2
p,t

p→Ht, and bRsp,t =
³bH∗

sp,t

´−1 bHsp,t

³bH∗
sp,t

´−1 p→ Rt.

(ii) Suppose that Hp,t = Hp conditioning on {Ft−1,xt = x} , which is a nonstochastic
matrix. Suppose that bHp is a consistent estimator of Hp and it is positive definite. LetbHsp = bH1/2

p
bHnp (x) bH1/2

p and H be Ht evaluated at time t conditioning on {Ft−1,xt = x} .
Then √

Th!
n
vech

³bHsp

´
− vech (H)−B (x)

o
d→ N

¡
0, μq02f(x)

−1Ω (x)
¢
,

where B (x) = D+
k

³
H
1/2
p ⊗H1/2

p

´
DkB (x) and

Ω (x) = D+
k

³
H1/2

p ⊗H1/2
p

´
DkΩ (x)D

0
k

³
H1/2

p ⊗H1/2
p

´ ¡
D+
k

¢0
.
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Remark 8. Corollary 3.2(i) says that we can obtain a consistent estimator for the con-

ditional covariance and correlation matrix. Corollary 3.2(ii) essentially says that bHsp is also

asymptotically normally distributed and it inherits the asymptotic bias and variance struc-

ture of bHnp (x) . By the delta method, one can also show that the semiparametric estimator

for conditional correlation matrix is also asymptotically distributed with the nonparametric

convergence rate
√
Th!.

Remark 9. To compare our estimator with the parametric estimator of conditional

covariance, first note that when the parametric component is correctly specified, as expected,

our estimator is less efficient than the parametric one since our estimator has a slower

convergence rate than the parametric estimator as khk → 0. Nevertheless, when h is kept

fixed, a careful examination of the proof of Theorem 3.1 and Corollary 3.2 indicates that our

semiparametric estimator is consistent with the true conditional covariance with the regular

parametric
√
T convergence rate. In this sense, we say that our estimator is almost as good

as the parametric estimator in terms of convergence rate when h is kept fixed. Next, in case

of misspecification, the PCC estimator is usually inconsistent (even though bθ is consistent for
some pseudo-true parameter θ∗) while our semiparametric conditional covariance estimator

is still consistent. Similar remarks hold true for the estimators of conditional correlation

matrix.

4 SIMULATION AND EMPIRICAL ANALYSIS

For now, we show the outperformance of SCC model for IS estimation and OoS predictions

via simulation and empirical analysis in the next two subsections.

4.1 Monte Carlo Simulation

In this subsection, we follow the idea of Engle (2002) to compare the small sample perfor-

mance of several conditional covariance estimators by examining certain characteristics of

conditional correlation when the true correlation processes are observable. We simulate bi-

variate GARCH processes by considering two univariate Gaussian GARCH processes (e.g.,

14



Engle, 2002):

r1,t =
p
h1,tε1,t, h1,t = 0.01 + 0.05r

2
1,t−1 + 0.94h1,t−1,

r2,t =
p
h2,tε2,t, h2,t = 0.5 + 0.2r

2
2,t−1 + 0.5h2,t−1,

where ⎛⎝ ε1,t

ε2,t

⎞⎠¯̄̄̄¯̄Ft−1 ∼ N

⎛⎝ 0

⎛⎝ 1 ρt

ρt 1

⎞⎠ ⎞⎠ .

We consider four specifications of ρt which are given in the following DGPs:

DGP1: ρt = 0.5 + 0.4 cos (2πt/20).

DGP2: ρt = 0.99− 1.98/
©
1 + exp

£
0.5×max ¡ε21,t−1, ε22,t−1¢¤ª.

DGP3: ρt = 0.3× 1
¡
ε21,t−1 ≤ h1,t−1

¢
+ 0.8× 1 ¡ε21,t−1 > h1,t−1

¢
.

DGP4: ρt = ρ2t with probability 0.5 and = ρ3t with probability 0.5, where ρ2t and ρ3t

are ρt specified in DGP2 and DGP3, respectively.

DGP1 was also adopted by Engle (2002). DGPs 2-3 are motivated by the stylized fact

in financial markets that conditional correlation in crisis periods is higher than that in

tranquil periods. DGP3 also borrows idea of regime switching from Pelletier (2006). DGP

4 is the mixture of DGP 2 and DGP 3. For each DGP, we will simulate 1000 observations

on rt = (r1,t.r2,t)
0. After throwing away the first 500 observations to avoid the starting-out

effect, we are left with T = 500 observations, which represents roughly two-year daily data.

The number of replications for each case is M = 200.

We will consider four parametric models for estimating the conditional correlation of rt,

namely the CCC, VC, SBEKK and DCC models reviewed in Section 2. In each case, we

will also obtain our SCC estimators by choosing the conditioning variable xt = rt−1. To

obtain our SCC estimators, we need to choose both the kernel function and the bandwidth

parameter. It is well known that the choice of kernel function k(·) is not important in
nonparametric or semiparametric estimation. We will simply use the Gaussian kernel:

k (u) = exp
¡−u2/2¢ /√2π.

For the bandwidth, we follow the idea of grid-searching and set

hj = cjbσjn−1/6, j = 1, 2,
15



where bσj is the sample standard deviation of rj,t, and the optimal cj is chosen from 0.5, 1,

1.5,...,5 by minimizing loss function of the corresponding semiparametric model.

Similar to Engle (2002), for each DGP and each estimator we calculate the mean squared

errors (MSE) across the M replications

MSE(bρt) = 1

MT

MX
m=1

TX
t=1

³bρ(m)t − ρ
(m)
t

´2
, (4.1)

where ρ
(m)
t and bρ(m)t are the true conditional correlation and its estimates at time t in the

mth replication, respectively.

In Table 1, we compare the simulation results for the CCC, VC, SBEKK, DCC models

and their semiparametric counterparts in terms of MSE(bρt) and their improvement ratio,
which is defined as

ratio =

∙
Loss (PCC)− Loss (SCC)

Loss (PCC)

¸
× 100 (4.2)

where Loss(SCC) and Loss(PCC) are the MSE2 for the SCC estimator and for the start-up

PCC estimator, respectively. We summarize some interesting findings below.

(1) Our SCC estimator always beat the PCC estimator that is used as its parametric

start. Take DGP1 as an example. The DCC model by Engle (2002) has the second smallest

MSE values (0.069078) among the parametric estimators; our semiparametric estimator can

further decrease it to 0.068965.

(2) In terms of MSE, the rankings of semiparametric estimators are consistent with

the rankings of parametric estimators. In DGP3, for instance, the performance of the

parametric estimators in the CCC, VC, SBEKK and DCC models deteriorates in order, so

does the performance of the semiparametric estimators with these corresponding models as

the start-up models.

(3) There is no clear relationship between the relative ranking of parametric start-up

models based on their MSE values and the improvement extent of the corresponding semi-

parametric estimators in terms of their improvement ratios. We did not observe that for

the parametric start-up model being far away from the true model, its corresponding semi-

parametric estimator has more gain in terms of MSE compared with the case when the

parametric start model is closer to the true model. In DGP 1, for example, the parametric

2Or VaR loss discussed in the next subsection.
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model ranking with ascending MSE value is SBEKK, DCC, VC to CCC models, which is not

the ascending improvement ratio ranking of DCC-NW, SBEKK-NW, VC-NW and CCC-

NW models. Take DGP4 as another example. The range of improvement ratio varies from

3.417% to 5.116%. The improvement ratio for the SBEKK-NW model over the SBEKK

model is the smallest whereas that for CCC-NW model over the CCC model is the largest.3

This occurs whilst among the PCC models the SBEKK model has the largest MSE and the

CCC model has the smallest MSE.

4.2 Empirical Analysis

Although many multivariate conditional covariance models are proposed, only a few are

applied to high-dimensional case, for example, 7 stock indices in Ledoit, Santa-Clara, and

Wolf (2003). To show our capacity of expanding to high dimension, we examine the data

sets consisting of 30 stocks in the last two empirical applications in addition to the first

example of bivariate stock indices. These three interesting financial daily time series are:

the NASDAQ Composite Index and Standard & Poor’s 500 Index (NASDAQ - SP) from

January 2, 1990 to December 30, 1994 (T = 1265 observations); the first 30 stocks4 existing

since beginning (January 3, 1984) among the component stocks of Financial Times Stock

Exchange 100 Index (FTSE) sorted by alphabet from January 4, 2000 to December 31,

2003 (T = 1009 observations); and the 30 stocks constituting the Dow Jones Industrial

Average (DJIA) from January 4, 1993 to December 31, 1997 (T = 1264 observations). The

first data sets is from Yahoo and the last two are from Datastream. For stationary and

ease interpretation, we thus compute percentage returns as log returns multiplied by 100.

We consider the entire sample period for IS estimators and the corresponding standardized

residuals are bootstrapped to compute the p-value for Value-at-Risk (VaR) calculation later.

We split the samples at day R, the last day of the second last year and apply the “fixed

scheme” to do one-day-ahead conditional covariance matrix forecast throughout a whole

year beyond day R: estimating parameters based on information set FR and fixing these

estimated parameter values to make forecasts throughout the forecasting period with P =

3The SBEKK-NW model denotes the SCC model incorporating parametric SBEKK model and nonpara-

metric Nadaraya-Watson model multiplicatively. Similar notation is used for the CCC-NW, VC-NW, and

DCC-NW models.
4The stock name list is available upon request.
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T −R− 1 = 252, 251 and 253 observations in three cases, respectively. Thus, for example,
the IS period for DJIA goes from January 5, 1993 to December 31, 1997 and the OoS period

goes from January 2, 1997 to December 31, 1997.

Any discussions on conditional mean and its relationship with conditional covariance

are outside the scope of the paper. For these data sets, we assume the conditional means

are zero based on efficient market hypothesis and sample-mean filter is used. We choose

the kernel function and the bandwidth as we do in the simulation. Although there is no

consensus among the Finance profession on the identity of the common factors, - how many

and which ones are?- stock index is always the first factor being picked up. Thus rather than

taking the lagged studied variables as in the simulation and in the first empirical application,

we select the one-day lag percentage return of DJIA Index (FTSE 100 Index) as the state

variable for the 30-stock set in the second (third) application.

We consider two types of criterion functions to judge the relative fitting and predictive

ability of various conditional covariance models in terms of portfolios’ certain characteristics.

One is the modified mean squared error that is adapted to our framework because the true

conditional covariance matrix is not observable. Zangari (1997) addresses the advantage of

focusing on the volatility hyt of the aggregate portfolio yt ≡ ω0rt instead of the conditional

covariance matrix Ht, where hyt = ω0Htω and ω is a weight vector. When comparing

the predictability of univariate GARCH models, Awartani and Corradi (2005) substitute

the unobservable volatility by the squared observed returns because of the rank-preserving

property of this substitution under the MSE loss function. They conclude that both this

squared returns and realized volatility are good proxies of the unobservable volatility when

interested in model comparisons. Because of the unavailability of intraday returns, the

proxy in the criteria to compare volatility and correlation forecasts in Pelletier (2006) is the

cross-product of daily return instead of cumulative cross-product of intraday returns over

the forecast horizon. Following them, we compare various models by calculating the fitting

and predictive measures, MSEjIS and MSE
j
OoS

5, for model j, as

MSEjOoS =
1

P

T−2X
t=R

³
ω0t+1 bHj

t+1ωt+1 − ω0t+1rt+1r0t+1ωt+1

´2
, (4.3)

5To save space, we only present formulae for MSEjOoS, VaR
α,j
OoS,t+1 and Qα,j

OoS. It is not difficult to derive

the formulae for MSEjIS, VaR
α,j
IS,t and Qα,j

IS .
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where bHj

t+1 is the one-step-ahead forecaster of Ht+1 at time t from model j.

The second loss is based on the portfolios’ VaR. The Basel Committee on Banking

Supervision uses VaR to estimate the risk exposure of financial institutes for a ten-day

holding period and 99% coverage (α = 1%). Denote the VaR forecast of the weighted

portfolio with tail probability α from model j within our framework as

VaRα,j
OoS,t+1 = Φ

j
α

q
ω0t+1 eHj

t+1ωt+1, (4.4)

where Φjα is the quantile of cumulative distribution function of weighted portfolio at tail

probability α ∈ (0, 1) from model j. Apart from adopting the quantiles of standard normal

distribution, Bauwens and Laurent (2005) use a Monte Carlo simulation and HDF employ

the quantiles of the standardized IS portfolio returns. Instead, we compute Φjα by repeated

bootstrap sampling the weighted standardized residuals over the entire samples. Hall (1986)

explains theoretically few bootstrap sampling replications could produce satisfactory results,

thus we compute bootstrap critical values via 100 replications of the bootstrap sampling

process. Note that the weighted sum of the underlying asset returns’ VaR is not equal to

the weighted portfolio’s VaR. The OoS VaR loss function for model j, which is the check

function of Koenker and Bassett (1978), is

Qj
OoS =

1

P

T−2X
t=R

(α− 1(yt+1 < VaRα,j
OoS,t+1))(yt+1 −VaRα,j

OoS,t+1), (4.5)

where 1(.) is an indicator function. The tail characteristics at α = 1% and 5% of the

portfolio constructed by the equal weight and the minimum variance weight are examined.

For the equally weighted portfolio, the constant equal weight is ωt = k−1e, where e is a k×1
vector of ones; and for the minimum variance portfolio, the weight is ωt = H

−1
t e/

¡
e0H−1t e

¢
.

The IS and OoS performance measures of different conditional covariance models over

these empirical datasets are presented in Table 2-4, with the equal weight portfolio results in

Panel A and the minimum variance portfolio results in Panel B. For each pair of parametric

start-up model and the corresponding semiparametric model, the improvement ratio defined

as loss difference over parametric model’s loss is reported in percentage for both IS and OoS

cases.

Some important findings are presented as: (1) For both criterion functions, our semi-

parametric model can always reduce the loss values of the start-up parametric model no
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matter which weight or which sample period (IS or OoS) we are interested in. The improve-

ment is significant across all these datasets. For the NASDAQ-SP dataset, the range of

improvement ratio ranges from 0.586% (OoS VaR loss at 1% for CCC vs. CCC-NW models

with minimum variance weight) to 48.373% (IS MSE for SBEKK vs. SBEKK-NW model

with minimum variance weight); for the FTSE data set, the range is from 0.460% (IS MSE

for DCC vs. DCC-NW models with equal weight) to 81.446% (IS MSE for SBEKK vs.

SBEKK-NW models with minimum variance weight); and for the DJIA data set, the range

is from 2.776% (OoS VaR loss at 5% for DCC vs. DCC-NW models with equal weight) to

80.317% (IS MSE for SBEKK vs. SBEKK-NW models with minimum variance weight).

(2) There exists no semiparametric model that is universally the best across different

datasets, weighting methods or loss functions. While the SBEKK-NW model has the small-

est OoS values across the loss functions for the minimum variance DJIA portfolio, its OoS

MSE is bigger than that of the VC-NW model for the equal weight DJIA portfolio. For the

minimum variance DJIA portfolio, the DCC-NW model beats all other models in terms of

IS losses, but we do not observe this dominance for the equal weight DJIA portfolio.

(3) For the same conditional covariance model, the minimum variance portfolio always

outperforms the equal weight portfolio in terms of the loss functions we examine across

all datasets. For the VC model, for example, the VaR loss at 1% of equal weighted DJIA

portfolio is 0.144, bigger than that of minimum variance DJIA portfolio, 0.085; and for the

DCC-NW model, the VaR loss at 5% of the minimum variance NASDAQ-SP portfolio is

0.072, smaller than that of the equal weight NASDAQ-SP portfolio, 0.087.

(4) The improvement ratio by semiparametric methodology does in favour of the more

extreme case for high-dimensional portfolio no matter which portfolio and which start-up

parametric model we choose: the improvement ratios of VaR loss at tail probability of

1% are bigger than those at 5%. To the minimum variance DJIA portfolio, the DCC-

NW model’s improvement ratio for IS VaR loss when α = 1% is 70.767%, 23.690% higher

than the corresponding value when α = 5%, 47.077%; and for the equal weight DJIA

portfolio, this difference is 17.859%. We observe the same phenomena for FTSE portfolio:

the improvement ratio difference of VC-NW between OoS VaR losses at 1% and at 5% is

18.186% for minimum variance weight and 22.127% for equal weight.
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5 CONCLUSION

In this paper, we propose a new semiparametric kernel-based modeling methodology for con-

ditional covariance matrix, which applies Nadaraya-Watson type estimator to extract the

information hidden in the standardized residuals from the parametric MGARCH models.

Our SCC model combines parametric model and nonparametric model in a multiplicative

way. For every parametric MGARCH model, there is a semiparametric counterpart, which is

robust to two common misspecifications of the conventional parametric MGARCH models:

multivariate normal distribution and linear functional form. We show that our semipara-

metric estimator is consistent and asymptotically normal under some regularity conditions.

To examine the finite sample performance of our semiparametric estimators, we conduct a

small set of Monte Carlo experiments inspired by the asymmetric correlations of financial

time series data. We find that the nonparametric correction at the second stage of our SCC

estimator can indeed improve the finite sample performance of the parametric MGARCH

estimators in terms of MSE. Empirical applications on stock indices, and high-dimensional

stock portfolio are quite encouraging: our new SCC models outperform their ancestors, the

parametric MGARCH models, including the DCC model of Engle (2002), in reducing the

values of MSE and VaR loss for both IS fitting and OoS forecasting conditional covariance

matrix.

ACKNOWLEDGEMENTS

The authors gratefully thank the conference and seminar participants at Australasian

Meeting of Econometric Society (2006), Catholic University of Louvain, European FMA

conference (2005), Forum of Interdisciplinary Mathematics (FIM) Portugal, Indiana Uni-

versity, University of Cambridge, and University of Oxford for their comments. All errors

are the authors’ responsibilities. The second author gratefully acknowledges the financial

support from the NSFC under the grant numbers 70501001 and 70601001. The third author

acknowledges the financial support from the academic senate, UCR.

21



Appendix

A Proof of the Main Results

We use C to signify a generic constant whose exact value may vary from case to case, and

a0 to denote the transpose of a. Let bf (x) = T−1
PT

s=1Kh(xs − x), and

eHnp (x) = T−1
TX
s=1

ese
0
sKh(xs − x)/ bf (x) .

The following lemmas are needed for the proof of the main results.

Lemma A.1 Under Assumptions A1-A7,

√
Th!

n
vech

³eHnp (x)
´
− vech (Hnp (x))−B (x)

o
d→ N

¡
0, μq02f(x)

−1Ω (x)
¢

where recall h!=h1...hq, and Ω (x) and B (x) are defined in Theorem 3.1.

Proof. Let WTijs = Kh(xs− x)eisejs and WTij = T−1
PT

s=1WTijs, where eis is the ith

element of es. Define two k (k + 1) /2−vectors:

WTs = (WT11s,WT21s...,WTk1s,WT22s, ...,WTk2s, ...,WTkks)
0

WT = (WT11,WT21...,WTk1,WT22, ...,WTk2, ...,WTkk)
0 .

Clearly, WT = T−1
PT

s=1WTs. The statistic WTij/ bf (x) estimates the (i, j)th element of
Hnp (x) by using the “data” {et,xt} . Let ZTs = (h!/T )1/2 (WTs −E (WTs)) and ZT =PT

s=1 ZTs. Write

WT = T−1
TX
s=1

E (WTs) + T−1
TX
s=1

(WTs −E (WTs))

= T−1
TX
s=1

E (WTs) + (Th!)
−1/2

TX
s=1

ZTs

The first term contributes to the bias of eHnp (x) whereas the second term contributes to

the variance of eHnp (x) . The proof will be completed by proving the following claims:

bf (x) p→ f (x) , (A.1)
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T−1
TX
s=1

E (WTs) = f (x) vech (Hnp (x)) + f (x) vech (B (x)) + oP (khk2). (A.2)

and

ZT =
TX
s=1

ZTs
d→ N (0, μq02f (x)Ω (x)) . (A.3)

(A.1) follows from standard results in kernel density estimation. Using standard argu-

ments for analyzing the bias of the Nadaraya-Watson estimator, we have

E (WTijs) = E [Kh(xs − x)eitejt] = f (x) [Hnp,ij (x) +Bij (x)] + oP (khk2)

where

Bij (x) =
μ21
2f (x)

qX
l=1

∙
2
∂f (x)

∂xl

∂Hnp,ij (x)

∂xl
+ f (x)

∂2Hnp,ij (x)

∂xl∂xl

¸
h2l .

Thus (A.2) follows by the stationarity assumption. To show (A.3), let c = (c11, c21..., ck1, c22,

..., ck2, ..., ckk)
0 denote a k (k + 1) /2−vector of bounded constants such that kck = 1. By the

Cramér-Wold device, it suffices to show

c0ZT =
TX
s=1

c0ZTs
d→ N

¡
0, μq02f (x) c

0Ω (x) c
¢
. (A.4)

By construction, E (ZT ) = 0, and

Var
¡
c0ZT

¢
= T−1h!

TX
t=1

Var
¡
c0WTt

¢
+2T−1h!

XX
1≤s<t≤T

Cov
¡
c0WTs, c

0WTt

¢ ≡ A1+A2. (A.5)

We calculate A1 and A2 in turn.

A1 = T−1h!
TX
t=1

Var
¡
c0WTt

¢
=

XX
1≤j≤i≤k

XX
1≤m≤l≤k

cijclm

"
T−1h!

TX
t=1

E
£
K2
h(xt − x)Cov

¡
(ij,t, (lm,t|xt = x

¢¤#
= μq02f (x)

XX
1≤j≤i≤k

XX
1≤m≤l≤k

cijclmωij,lm (x) +O (khk)

= μq02f (x) c
0Ω (x) c+O (khk) , (A.6)

where (ij,t = eitejt and ωij,lm (x) =Cov
¡
(ij,t, (lm,t|xt = x

¢
. To calculate A2, write

A2 = 2T−1h!
XX
1≤s<t≤T

XX
1≤j≤i≤k

XX
1≤m≤l≤k

cijclmCov (WTijs,WT lmt)

= 2h!
TX
t=2

µ
1− j

T

¶XX
1≤j≤i≤k

XX
1≤m≤l≤k

cijclmCov (WTij1,WT lmt) . (A.7)
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Noting that even though {vt} is a m.d.s., this does not ensure that Cov(WTijs,WT lmt) = 0

for s 6= t. To bound the right hand side of (A.7), we split it into two terms as follows

TX
t=2

|Cov (WTij1,WT lmt)| =
dTX
t=2

|Cov (WTij1,WT lmt)|+
TX

t=dT+1

|Cov (WTij1,WT lmt)| ≡ J1+J2,

(A.8)

where dT is a sequence of positive integers such that dTh! → 0 as T → ∞. Since for any

t > 1, |E (WTij1WT lmt)| = O (1) ,

J1 = O (dn) . (A.9)

For J2, by the Davydov’s inequality (e.g., Hall and Heyde, 1980, p. 278; Bosq, 1996, p.19),

we have

|Cov (WTij1WT lmt)| ≤ C [α (t− 1)]δ/(2+δ) sup
i,j

³
E |WTij1|2+δ

´2/(2+δ)
≤ C (h!)−(2+2δ)/(2+δ) [α (t− 1)]δ/(2+δ) .

So by Assumption A.1,

J2 ≤ C (h!)−(2+2δ)/(2+δ)
TX

t=dT+1

[α (t− 1)]δ/(2+δ)

≤ C (h!)−(2+2δ)/(2+δ) d−aT
∞X

t=dT

ta [α (t)]δ/(2+δ) = o
³
(h!)−1

´
, (A.10)

by choosing dT such that d
a
T (h!)

δ/(2+δ) →∞. The last condition can be simultaneously met

with dTh!→ 0 for a well chosen sequence {dT} because a > δ/ (2 + δ) by Assumptions A.1

and A.7. (A.7)-(A.10) imply that

A2 = O (dnh!) + o (1) = o (1) .

Hence,

Var
¡
c0ZT

¢
= μq02f (x) c

0Ω (x) c+ o (1) .

Using the standard Doob’s small-block and large-block technique, we can finish the rest

of the normality proof of (A.4) by following the arguments of Cai, Fan and Yao (2000, pp.

954-955) or Cai and Ould-Säıd (2003, pp. 446-448). ¥

Lemma A.2 Under Assumptions A1-A7,

vech
³bHnp (x)

´
− vech

³eHnp (x)
´
= oP

³
(Th!)−1/2

´
.
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Proof. Let ∆ (x) = [vec( bHnp (x))−vec( eHnp (x))] bf (x) . Noting that bf (x) p→ f (x) > 0

and vech(A) = D+
k vec(A) for any symmetric k × k matrix A, it suffices to show that

∆ (x) = oP ((Th!)
−1/2). By the first order expansion,

bet = et(bθ) =H−1/2p,t

³bθ´ rt = et + ξt
¡
θ
¢ ³bθ − θ∗

´
where recall ξt (θ) = ∂et(θ)/∂θ

0, and θ lies between bθ and θ∗. By Assumptions A2-A3,

θ
p→ θ∗. So

∆ (x) =
1

T

TX
t=1

Kh(xt − x)vec
£betbe0t − ete0t¤

=
1

T

TX
t=1

Kh(xt − x)vec
∙
ξt
¡
θ
¢ ³bθ − θ∗

´³bθ − θ∗
´0
ξt
¡
θ
¢0¸

+
2

T

TX
t=1

Kh(xt − x)vec
∙
et

³bθ − θ∗
´0
ξt
¡
θ
¢0¸

=
1

T

TX
t=1

Kh(xt − x)
¡
ξt
¡
θ
¢⊗ ξt ¡θ¢¢ vec ∙³bθ − θ∗

´³bθ − θ∗
´0¸

+
2

T

TX
t=1

Kh(xt − x)
¡
ξt
¡
θ
¢⊗ et¢ ³bθ − θ∗

´
≡ ∆1 (x) + 2∆2 (x) .

By the triangle inequality, Markov inequality, and Assumptions A4-A7,

k∆1 (x)k ≤ 1

T

TX
t=1

Kh(xt − x)
°°°°¡ξt ¡θ¢⊗ ξt ¡θ¢¢ vec ∙³bθ − θ∗

´³bθ − θ∗
´0¸°°°°

≤ 1

T

TX
t=1

Kh(xt − x)
°°ξt ¡θ¢°°2 °°°bθ − θ∗

°°°2
≤ 1

T

TX
t=1

Kh(xt − x)D2
t

°°°bθ − θ∗
°°°2 = OP

µ
1

Th!

¶
,

and

k∆2 (x)k ≤ 1

T

TX
t=1

Kh(xt − x)
°°°¡ξt ¡θ¢⊗ et¢ ³bθ − θ∗

´°°°
≤ 1

T

TX
t=1

Kh(xt − x)
°°ξt ¡θ¢°° ketk°°°bθ − θ∗

°°°
≤ 1

T

TX
t=1

Kh(xt − x)Dt ketk
°°°bθ − θ∗

°°° = OP

³
T−1/2

´
.
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Consequently, ∆ (x) = OP ((Th!)
−1 + T−1/2) = oP ((Th!)

−1/2).¥

Proof of Theorem 3.1

The result follows from Lemmas A.1-A.2.¥

Proof of Corollary 3.2

By Assumptions A3 and A5, bHp,t = H
1/2
p,t (

bθ) = H1/2
p,t + oP (1) . By Theorem 3.1, bHnp,t =bHnp (xt) = Hnp,t + oP (1) . It follows from the Slutsky theorem that

bHsp,t = bH1/2
p,t
bHnp,t

bH1/2
p,t = H

1/2
p,t Hnp,tH

1/2
p,t + oP (1) =Ht + oP (1) ,

and bH∗
sp,t = H

∗
t + oP (1) ,

where H∗t is a diagonal matrix with the square roots of the diagonal elements of Ht on its

diagonal. Hence

bRsp,t =
³bH∗

sp,t

´−1 bHsp,t

³bH∗
sp,t

´−1 p→ (H∗t )
−1Ht (H

∗
t )
−1 = Rt.

To show (ii), noting that

√
Th!

h
vech
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´
− vech (H)

i
=
√
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k

h
vec
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´
− vec (H)

i
=
√
Th!D+

k vec
³
H1/2

p

³bHnp (x)−Hnp (x)
´
H1/2

p

´
+ oP (1)

=
√
Th!D+

k

³
H1/2

p ⊗H1/2
p

´
vec

³bHnp (x)−Hnp (x)
´
+ oP (1)

=
√
Th!D+

k

³
H1/2

p ⊗H1/2
p

´
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h
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Table 1 Mean Square Error (MSE) for Simulation 
 

DGP  CCC CCC-NW (%) VC VC-NW % SBEKK SBEKK-NW % DCC DCC-NW % 
1 0.081 0.079 (2.788) 0.078 0.077 (0.993) 0.069 0.069 (0.245) 0.069 0.069 (0.164) 
2 0.067 0.033 (51.714) 0.069 0.033 (51.726) 0.070 0.036 (48.615) 0.071 0.038 (46.991) 
3 0.056 0.033 (41.332) 0.056 0.034 (39.702) 0.057 0.037 (34.065) 0.059 0.041 (31.494) 
4 0.069 0.065 (5.116) 0.070 0.067 (4.692) 0.072 0.070 (3.417) 0.071 0.068 (4.004) 

 
NOTE: CCC is constant conditional correlation model, VC is varying correlation model, SBEKK is scalar BEKK model, and DCC is dynamic 
conditional correlation model. CCC-NW, VC-NW, SBEKK-NW and DCC-NW models are semiparametric conditional covariance models. For 
every DGP, the sample size is 500. We first generate 1,000 observations and drop the first 500 observations to avoid the starting-out effect. The 
simulation number is 200. The best model in one DGP has the smallest MSE value (boldfaced) in the same row. The % column with brackets is 
the improvement ratio in percentage of semiparametric conditional covariance estimator compared with its parametric start-up estimator.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2 MSE Loss for Estimation and Forecasting of Conditional Covariance Matrix 
Panel A: Equal Weight          
        CCC CCC-NW      (%)       VC  VC-NW        (%) SBEKK SBEKK-NW  (%)     DCC DCC-NW      (%) 
NASDAQ-SP IS 1.533 1.136 (25.871) 1.543 1.138 (26.206) 1.544 1.144 (25.924) 1.532 1.137 (25.790) 
  OoS 0.687 0.667 (3.002) 0.696 0.671 (3.592) 0.704 0.678 (3.765) 0.688 0.667 (3.013) 
FTSE IS 8.405 8.354 (0.602) 8.448 8.404 (0.522) 8.458 8.000 (5.413) 8.280 8.242 (0.460) 
  OoS 7.102 6.795 (4.320) 7.362 6.992 (5.023) 8.042 7.986 (0.688) 7.075 6.834 (3.407) 
DJIA IS 3.645 2.962 (18.744) 3.663 2.992 (18.321) 3.695 3.011 (18.493) 3.628 2.974 (18.025) 
  OoS 15.004 14.470 (3.557) 14.696 14.013 (4.648) 14.814 14.402 (2.776) 14.686 14.083 (4.105) 
 
Panel B: Minimum Variance Weight           

        CCC CCC-NW      (%)       VC  VC-NW        (%) SBEKK SBEKK-NW  (%)     DCC DCC-NW      (%) 
NASDAQ-SP IS 1.271 0.720 (43.317) 1.269 0.681 (46.357) 1.266 0.653 (48.373) 1.280 0.715 (44.145) 
  OoS 0.457 0.426 (6.859) 0.469 0.430 (8.258) 0.496 0.454 (8.417) 0.460 0.432 (6.216) 
FTSE IS 1.419 0.374 (73.662) 1.455 0.357 (75.455) 1.221 0.227 (81.446) 1.362 0.360 (73.537) 
  OoS 1.067 0.976 (8.590) 0.686 0.640 (6.659) 0.520 0.519 (0.135) 0.683 0.651 (4.572) 
DJIA IS 1.481 0.321 (78.347) 1.681 0.337 (79.954) 1.740 0.343 (80.317) 1.471 0.320 (78.265) 
  OoS 9.116 4.878 (46.488) 7.901 5.806 (26.511) 6.536 4.694 (28.171) 6.793 5.037 (25.844) 

 

NOTE: Daily changes in log price for NASDAQ Composite Index (NASDAQ) and Standard & Poor's 500 Index (SP) from 01/02/1990 to 
12/30/1994 (1265 observations); daily changes in log price for the first 30 stocks existing since beginning (01/03/1984) among the component 
stocks of FTSE 100 Index (FTSE) sorted by alphabet from 01/04/2000 to 12/31/2003 (1009 observations); and daily changes in log price for 30 
stocks constituting the Dow Jones Industrial Average Index (DJIA) from 01/04/1993 to 12/31/1997 (1264 observations) are used for in-sample 
(IS) estimation. The range of the out-of-sample (OoS) forecast for conditional covariance between NASDAQ-SP is from 01/03/1994 to 
12/30/1994 with P = 252; that range for FTSE is from 01/02/2003 to 12/31/2003 with P = 253; and that range for DJIA is from 01/02/1997 to 
12/31/1997 with P = 253. For one data set, the best model has the smallest loss value (boldfaced) in the same row. The % column with brackets 
is the improvement ratio in percentage of semiparametric conditional covariance estimator/forecaster compared with its parametric start-up 
estimator/forecaster.  



Table 3 VaR Loss at 1% for Estimation and Forecasting of Conditional Covariance Matrix 
Panel A: Equal Weight          
        CCC CCC-NW      (%)       VC  VC-NW        (%) SBEKK SBEKK-NW  (%)     DCC DCC-NW      (%) 
NASDAQ-SP IS 0.032 0.026 (20.034) 0.032 0.026 (18.728) 0.032 0.026 (17.752) 0.032 0.026 (20.061) 
  OoS 0.030 0.026 (13.813) 0.028 0.026 (9.467) 0.030 0.026 (14.606) 0.030 0.026 (14.655) 
FTSE IS 0.230 0.122 (46.721) 0.226 0.122 (45.807) 0.214 0.127 (40.753) 0.230 0.124 (46.283) 
  OoS 0.220 0.110 (49.724) 0.210 0.108 (48.660) 0.190 0.103 (45.723) 0.215 0.108 (50.000) 
DJIA IS 0.145 0.076 (47.486) 0.144 0.076 (47.139) 0.145 0.078 (46.332) 0.145 0.076 (47.397) 
  OoS 0.277 0.168 (39.319) 0.264 0.155 (41.434) 0.261 0.154 (41.163) 0.263 0.156 (40.752) 
 
Panel B: Minimum Variance Weight           

        CCC CCC-NW      (%)       VC  VC-NW        (%) SBEKK SBEKK-NW  (%)     DCC DCC-NW      (%) 
NASDAQ-SP IS 0.026 0.021 (21.860) 0.028 0.020 (27.493) 0.028 0.021 (26.838) 0.026 0.021 (21.936) 
  OoS 0.021 0.021 (0.586) 0.024 0.021 (12.030) 0.028 0.024 (15.555) 0.023 0.022 (2.517) 
FTSE IS 0.086 0.026 (69.198) 0.083 0.026 (68.881) 0.071 0.025 (65.389) 0.084 0.026 (68.996) 
  OoS 0.090 0.027 (69.689) 0.067 0.025 (63.096) 0.046 0.023 (50.999) 0.070 0.025 (64.749) 
DJIA IS 0.085 0.025 (70.862) 0.085 0.026 (69.570) 0.089 0.027 (70.105) 0.085 0.025 (70.767) 
  OoS 0.214 0.077 (64.135) 0.173 0.061 (64.678) 0.158 0.052 (67.136) 0.172 0.060 (65.212) 

 

Also see notes for Table 2. 
 
 
 
 
 
 
 



Table 4 VaR Loss at 5% for Estimation and Forecasting of Conditional Covariance Matrix 
Panel A: Equal Weight          
        CCC CCC-NW      (%)       VC  VC-NW        (%) SBEKK SBEKK-NW  (%)     DCC DCC-NW      (%) 
NASDAQ-SP IS 0.098 0.087 (11.198) 0.098 0.087 (11.007) 0.098 0.087 (11.437) 0.098 0.087 (11.199) 
  OoS 0.090 0.080 (10.927) 0.088 0.082 (7.618) 0.090 0.081 (9.730) 0.090 0.080 (11.494) 
FTSE IS 0.319 0.225 (29.508) 0.322 0.227 (29.510) 0.319 0.236 (25.957) 0.319 0.225 (29.317) 
  OoS 0.301 0.220 (26.796) 0.298 0.219 (26.534) 0.289 0.219 (24.380) 0.297 0.216 (27.154) 
DJIA IS 0.211 0.149 (29.649) 0.211 0.149 (29.477) 0.211 0.151 (28.538) 0.211 0.149 (29.538) 
  OoS 0.349 0.266 (23.668) 0.342 0.256 (25.088) 0.339 0.255 (24.811) 0.341 0.256 (24.913) 
 
Panel B: Minimum Variance Weight           

        CCC CCC-NW      (%)       VC  VC-NW        (%) SBEKK SBEKK-NW  (%)     DCC DCC-NW      (%) 
NASDAQ-SP IS 0.086 0.072 (16.059) 0.087 0.072 (17.481) 0.087 0.072 (17.318) 0.085 0.072 (15.952) 
  OoS 0.075 0.068 (9.735) 0.075 0.067 (11.269) 0.081 0.072 (12.154) 0.075 0.068 (9.596) 
FTSE IS 0.152 0.073 (51.853) 0.153 0.072 (52.787) 0.147 0.073 (50.637) 0.151 0.073 (51.694) 
  OoS 0.155 0.084 (45.482) 0.138 0.076 (44.911) 0.117 0.072 (38.829) 0.136 0.074 (45.477) 
DJIA IS 0.139 0.074 (47.124) 0.142 0.075 (46.901) 0.147 0.076 (48.262) 0.139 0.073 (47.077) 
  OoS 0.279 0.164 (41.080) 0.243 0.147 (39.305) 0.231 0.137 (40.556) 0.242 0.145 (40.027) 

 

Also see notes for Table 2. 
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