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Abstract

This paper develops a wavelet (spectral) approach to test the presence of a unit root in a
stochastic process. The wavelet approach is appealing, since it is based directly on the different
behavior of the spectra of a unit root process and that of a short memory stationary process.
By decomposing the variance (energy) of the underlying process into the variance of its low
frequency components and that of its high frequency components via the discrete wavelet trans-
formation (DWT), we design unit root tests which have substantial power against near unit root
alternatives. Since DWT is an energy preserving transformation and able to disbalance energy
across high and low frequency components of a series, it is possible to isolate the most persistent
component of a series in a small number of scaling coefficients. Our tests utilize the wavelet
coefficients of the coarsest scale. We demonstrate the size and power properties of our tests
through Monte Carlo simulations, and apply them to financial time series. A generalization of
our unit root tests to the maximum overlap DWT (MODWT) and to residual based tests for
cointegration are also provided.
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1 Introduction

As Granger (1966) pointed out, the vast majority of economic variables, after removal of any
trend in mean and seasonal components, have similar shaped power spectra where the power of
the spectrum peaks at the lowest frequency with exponential decline towards higher frequencies.
Since Nelson and Plosser (1982) argued that this persistence was captured by modeling the series
as having a unit autoregressive root, designing tests for unit root1 has attracted the attention of
many researchers. Most existing unit root tests make direct use of time domain estimators of the
coefficient of the lagged value of the variable in a regression with its current value as the dependent
variable, except the Von Neumann variance ratio (VN) tests of Sargan and Bhargava (1983) and
their extensions.2 Phillips and Xiao (1998) and Stock (1999) provide a helpful review of the main
tests and an extensive list of references. In this paper, we develop a general spectral (wavelet)
approach to testing unit roots inspired by Granger (1966). As we demonstrate, the VN tests of
Sargan and Bhargava (1983) and Bhargava (1986) are special cases of our wavelet unit root tests.

The method of wavelets decomposes a stochastic process into its components, each of which is
associated with a particular frequency band. The wavelet power spectrum measures the contribu-
tion of the variance at a particular frequency band relative to the overall variance of the process.
If a particular band contributes substantially more to the overall variance relative to another fre-
quency band, it is considered an important driver of this process. Recall that the spectrum of a
unit root process is infinite at the origin, and hence the variance of a unit root process is largely
contributed by low frequencies. By decomposing the variance (energy) of the underlying process
into the variance of its low frequency components and that of its high frequency components via
the discrete wavelet transformation (DWT), we design unit root tests which have substantial power
against near unit root alternatives. Since DWT is an energy preserving transformation and able to
disbalance energy across high and low frequency components of a series, it is possible to isolate the
most persistent component of a series in a small number of coefficients referred to as the scaling
coefficients. Our tests utilize the scaling coefficients of the coarsest scale. In particular, we con-

1The well-known Dickey and Fuller (1979) unit root tests have limited power to separate a unit root process from
near unit root alternatives in small samples. Phillips (1986), Phillips (1987) pioneered the use of the functional central
limit theorem to calculate the asymptotic distribution of statistics constructed from unit root processes. To construct
unit root tests with serially correlated errors, one approach is due to Phillips (1987) and Phillips and Perron (1988)
by adjusting the test statistic to take account for the serial correlation and heteroskedasticity in the disturbances.
The other approach is due to Dickey and Fuller (1979) by adding lagged dependent variables as explanatory variables
in the regression. Other important contributions are Chan and Wei (1987), Park and Phillips (1988), Park and
Phillips (1989), Sims et al. (1990), Phillips and Solo (1992) and Park and Fuller (1995). In general, unit root tests
cannot distinguish highly persistent stationary processes from nonstationary processes and the power of unit root
tests diminish as deterministic terms are added to the test regressions. For maximum power against very persistent
alternatives Elliott et al. (1996) (ERS) use a framework similar to Dufour and King (1991) (DK) to derive the
asymptotic power envelope for point-optimal tests of a unit root under various trend specifications. Ng and Perron
(2001) exploits the finding of ERS and DK to develop modified tests with enhanced power subject to proper selection
of a truncation lag.

2Cai and Shintani (2006) provide alternative VN tests.
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struct test statistics from the ratio of the energy from the low-frequency scale to the total energy
(variance) of the time series. We establish asymptotic properties of our tests and generalize our unit
root tests to residual based tests for cointegration. The DWT is an orthonormal transformation
which may be relaxed through an oversampling approach termed as the maximum overlap DWT
(MODWT), see, for example, Percival and Mofjeld (1997).3 Thus, orthogonality of the transform
is lost but it has been shown that the wavelet variance utilizing MODWT coefficients is more effi-
cient than the one obtained through the orthonormal DWT. Percival (1995) gives the asymptotic
relative efficiencies for the wavelet variance estimator based on the orthonormal DWT compared
to the estimator based on the MODWT. We generalize our tests to the MODWT setting to utilize
these efficiency gains.

The VN tests are based on the ratio of the sample variance of the first differences and the levels
of the time series. These tests avoid the problem of redundant trend to gain efficiency. Sargan and
Bhargava (1983) suggested using the VN statistic for testing the Gaussian random walk hypothesis,
and Bhargava (1986) extended to the case of the time trend. Stock (1995) studied unit root tests
with a linear time trend and Schmidt and Phillips (1992), working with polynomial trends, showed
that the Lagrange multiplier principle leads to a VN test. The VN tests are special cases of our
wavelet tests when we use the Haar wavelet filter and unit scale MODWT. The Haar wavelet filter
is the member of Daubechies compactly supported wavelet filter of the shortest length. By using
Daubechies wavelet filter of longer length and also DWT/MODWT of higher scales, our tests gain
power over the VN tests in finite samples.

An alternative spectral approach to time series analysis is that of the Fourier spectral analysis.
The Fourier approach is appealing when working with stationary time series. However, restricting
ourselves to stationary time series is not appealing since most economic/financial time series exhibit
quite complicated patterns over time (e.g., trends, abrupt changes, and volatility clustering). In
fact, if the frequency components are not stationary such that they may appear, disappear, and
then reappear over time, traditional spectral tools may miss such frequency components. Wavelet
filters provide a natural platform to deal with the time-varying characteristics found in most real-
world time series, and thus the assumption of stationarity may be avoided. The wavelet transform
intelligently adapts itself to capture features across a wide range of frequencies and thus has the
ability to capture events that are local in time. This makes the wavelet transform an ideal tool
for studying nonstationary time series. One example of the successful application of wavelets in
nonstationary time series analysis is in the context of long memory processes where a number
of estimation methods have been developed. These include wavelet-based OLS, the approximate
wavelet-based maximum likelihood approach, and wavelet-based Bayesian approach. Fan (2003)
and Fan and Whitcher (2003) provide an extensive list of references. The success of these methods
relies on the so called ‘approximate decorrelation’ property of the DWT of a possibly nonstationary

3The MODWT goes by several names in the literature, such as the stationary DWT by Nason and Silverman
(1995) and the translation-invariant DWT by Coifman and Donoho (1995). A detailed treatment of MODWT can
be found in Percival and Walden (2000) and Gençay et al. (2001).
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long memory process, see Fan (2003) for a rigorous proof of this result for a nonstationary frac-
tionally differenced process. Fan and Whitcher (2003) propose overcoming the problem of spurious
regression between fractionally differenced processes by applying the DWT to both processes and
then estimating the regression in the wavelet domain.

This paper provides another context in which the use of the wavelet (spectral) approach may
have advantages over the time domain approach or the Fourier approach. We contribute to the
unit root literature on three different fronts. First, we propose a unified spectral approach to unit
root testing; second, we provide a spectral interpretation of existing VN unit root tests; and finally,
we propose higher order wavelet filters to capture low-frequency stochastic trends parsimoniously
and gain power against near unit root alternatives. The Monte Carlo simulations are conducted to
compare the empirical size and power of our tests to the Dickey and Fuller (1979) (ADF), Phillips
and Perron (1988) (PP), Elliott et al. (1996) (ERS) and Ng and Perron (2001) (MPP) tests. Our
tests have good size and remarkable power against near unit root alternatives. The application to
financial time series provides a means to compare the power within these tests.

In section two, we begin with an overview of wavelets, discrete wavelet filters and discrete
wavelet transformation. In section three, we develop our wavelet-based unit root tests against purely
stationary alternatives via DWT. Section four considers the empirically more relevant cases where
the alternative processes against which the unit root process is tested may have deterministic trends.
Section five develops similar tests via MODWT. Section six provides Monte Carlo simulations on
the size and power properties of our tests. In section seven, an application to financial time series
is carried out. In section eight, we consider extensions of the previously developed unit root tests
to residual-based tests for cointegration. We conclude thereafter. An appendix contains technical
proofs.

2 Wavelets

A wavelet is a small wave which grows and decays in a limited time period.4 To formalize the
notion of a wavelet, let ψ(.) be a real valued function such that its integral is zero,

∫ ∞

−∞
ψ(t) dt = 0, (1)

and its square integrates to unity,

∫ ∞

−∞
ψ(t)2 dt = 1. (2)

4This section closely follows Gençay et al. (2001). The contrasting notion is a big wave such as the sine function
which keeps oscillating indefinitely.
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While Equation (2) indicates that ψ(.) has to make some excursions away from zero, any excursions
it makes above zero must cancel out excursions below zero due to Equation (1), and hence ψ(.) is
a wave, or a wavelet.

Fundamental properties of the continuous wavelet functions (filters), such as integration to zero
and unit energy (Equations (1) and (2)), have discrete counterparts. Let h = (h0, . . . , hL−1) be a
finite length discrete wavelet filter such that it integrates (sums) to zero

L−1∑

l=0

hl = 0 (3)

and has unit energy
L−1∑

l=0

h2
l = 1. (4)

In addition to Equations (3) and (4), the wavelet (or high-pass) filter h is orthogonal to its even
shifts; that is,

L−1∑

l=0

hlhl+2n =
∞∑

l=−∞
hlhl+2n = 0, for all nonzero integers n. (5)

These conditions state that a wavelet filter should sum to zero, must have unit energy and must
be orthogonal to its even shifts. We have already discussed the first two conditions earlier in
Equations (1) and (2). Equations (4) and (5) are known as the orthonormality property of wavelet
filters.

The natural object to complement a high-pass filter is a low-pass (scaling) filter g. By applying
both h and g to an observed time series, we can separate high-frequency oscillations from low-
frequency ones. We will denote a low-pass filter as g = (g0, . . . , gL−1). The low-pass filter coefficients
are determined by the quadrature mirror relationship5

gl = (−1)l+1hL−1−l for l = 0, . . . , L− 1 (6)

and the inverse relationship is given by hl = (−1)lgL−1−l. The basic properties of the scaling filter
are

L−1∑

l=0

gl =
√

2 (7)

L−1∑

l=0

g2
l = 1 (8)

5Quadrature mirror filters (QMFs) are often used in the engineering literature because of their ability for perfect
reconstruction of a signal without aliasing effects. Aliasing occurs when a continuous signal is sampled to obtain a
discrete time series.
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L−1∑

l=0

glgl+2n =
∞∑

l=−∞
glgl+2n = 0, (9)

for all nonzero integers n, and

L−1∑

l=0

glhl+2n =
∞∑

l=−∞
glhl+2n = 0 (10)

for all integers n. Equation (7) states that scaling coefficients are local weighted averages. Equa-
tions (8) and (9) indicate that scale coefficients satisfy the orthonormality property that they
possess unit energy and are orthogonal to even shifts.

The filter sequences {hl} and {gl} are high-pass and low-pass filters, respectively. Let H(f) be
the transfer (or gain) function of {hl} defined via the discrete Fourier transform (DFT); i.e.,

H(f) =
L−1∑

l=0

hl exp(−i2πfl),

and let G(f) be the discrete Fourier transform of {gl}. Displaying the squared gain functions H(f)
and G(f) = |G(f)|2 illustrates the frequency range captured by the wavelet and scaling filters. To
construct the orthonormal matrix that defines the discrete wavelet transformation (DWT), wavelet
coefficients cannot interact with one another. Equations 4 and 5 may be succinctly expressed in
the frequency domain via the squared gain function

H(f) + H(f + 1
2) = 2 for all f. (11)

This result can be motivated by Equation 5. The DFT of the left-hand side of Equation 5 is
given by [H(f/2) + H(f/2 + 1/2)]/2. Hence, Equation 5 can be re-expressed via its inverse DFT

L−1∑

l=0

hlhl+2n =
∫ ∞

−∞

1
2

[
H(f

2 ) + H(f
2 + 1

2)
]
ei2πfn df.

By plugging Equation 11 into the above equation, we obtain

L−1∑

l=0

hlhl+2n =
∫ ∞

−∞
ei2πfn df =

{
1 n = 0
0 otherwise

and, thus, Equations 4 and 5 are both satisfied. Figure 1a shows an ideal high-pass filter for
f ∈ [0, 1/4] and an approximation to this ideal filter by the Daubechies extremal phase wavelet
filter of length 4.

Finally, a band-pass filter has a squared gain function that covers an interval of frequencies and
then decays to zero as f → 0 and f → 1/2. We may construct a band-pass filter by recursively
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applying a combination of low-pass and high-pass filters. Let hJ,l be a band-pass filter produced
by a combination of J filters. Starting with h1,l, we obtain the filtered output uJ,t via

u1,t = h1,l ∗ xt

u2,t = h2,l ∗ u1,t

...
...

...

uJ,t = hJ,l ∗ uJ−1,t (12)

for t = 0,±1,±2, . . . The equivalent filter hl for the “cascade” of filters in Equation 12 has the
transfer function

H(f) =
J∏

j=1

Hj(f). (13)

This may be seen by viewing Equation 12 in the frequency domain via Fourier transforms; that is,

U1(f) = H1(f)X(f)

U2(f) = H2(f)U1(f) = H2(f)H1(f)X(f)
...

...
...

UJ (f) = HJ(f)UJ−1(f) = HJ(f)HJ−1(f) · · ·H1(f)X(f),

where X(f) is the DFT of xt. After applying a series of J filters, the DFT of the output series uJ,t

is given by the product of all previous Fourier transforms and may be depicted graphically through
the following flowchart:

xt −→ H1(f) −→ H2(f) −→ · · · −→ HJ(f) −→ uJ,t.

Using Equation 13 and the convolution property of the Fourier transform, UJ(f) = H(f)X(f) and,
therefore, uJ,t is simply the convolution of xt with hl; that is,

xt −→ H(f) −→ uJ,t.

Figure 1c shows an ideal band-pass filter for f ∈ [1/8, 1/4] and an approximation to this ideal filter
by a filter cascade of the Daubechies extremal phase scaling and wavelet filters of length 4.

2.1 The Haar Wavelet and Daubechies Wavelet Filters

The Haar (1910) wavelet filter is an excellent benchmark to illustrate {hj,l} and {gj,l}. The Haar
wavelet remained in relative obscurity until the convergence of several disciplines to form what we

6



now know in a broad sense as wavelet methodology. It is a filter of length L = 2 that can be
succinctly defined by its scaling (low-pass) filter coefficients

g0 = g1 =
1√
2
,

or equivalently by its wavelet (high-pass) filter coefficients h0 = 1/
√

2 and h1 = −1/
√

2 through the
inverse quadrature mirror relationship. The Haar wavelet is special since it is the only symmetric
compactly supported orthonormal wavelet (Daubechies, 1992, Ch. 8). Figure 2 shows the unit scale
wavelet filter coefficients h1,l = (1/

√
2,−1/

√
2), where the first subscript denotes the scale of the

filter, along with higher scale wavelet filter coefficients. The first row of filter coefficients illustrate
a simple difference operation, where projecting h1,l onto a vector produces a difference between
two adjacent observations. The next set of filter coefficients h2,l is a simple difference also, but two
pairs of observations are averaged and those averages differenced. This theme is repeated in h3,l

and h4,l, where the averages are growing in length before being differenced.
Although the Haar wavelet filter is easy to visualize and implement, it is a poor approximation

to an ideal band-pass filter. Figure 3 shows the squared gain functions for the scale 1–4 wavelet filter
coefficients. An ideal band-pass filter is proportional to one inside the desired frequency interval
and zero at all other frequencies. The dotted lines in each panel of Figure 3 indicate the frequency
interval for the ideal (nominal) band-pass filter. The squared gain functions associated with the
level j Haar wavelet filter do not decay rapidly outside this nominal frequency range, indicating
the filter is a poor approximation to the ideal band-pass filter.

The Haar wavelet filter is a member of the so-called Daubechies (1992) wavelet filters. The
Daubechies (1992) wavelet filters represent a collection of wavelets that improve on the frequency-
domain characteristics of the Haar wavelet and may still be interpreted as generalized differences of
adjacent averages. Daubechies derived these wavelets from the criterion of a compactly supported
function with the maximum number of vanishing moments.6 In general, there are no explicit time-
domain formulae for this class of wavelet filters. The squared gain function of {hl} can be written
explicitly as

H(f) ≡ |H(f)|2 = DL/2(f)C(f), C(f) ≡ 1
2L−1

L/2−1∑

l=0

(
L/2− 1 + l

l

)
cos2l(πf),

where D(f) ≡ 4 sin2(πf) is the squared gain function of a first order backward difference filter and
C(f) is the squared gain function of a low-pass or (weighted) averaging filter. We can thus regard
{hl} as a two stage filter; the first stage is an L/2th order backward difference filter, and the second
is a weighted average filter.

The squared gain function does not uniquely characterize a sequence of Daubechies wavelet
filters. If we think of a sequence of wavelet filter coefficients hl, it may be represented by using the

6A function ψ(t) with P vanishing moments satisfies
∫
tpψ(t)dt = 0, where p = 0, 1, . . . , P − 1.
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DFT yielding its transfer function H(f). In polar notation the complex-valued transfer function
may be written as

H(f) = |H(f)|exp[iθ(f)] = [H(f)]1/2 exp[iθ(f)],

so that although two filters share the same squared gain function, they may differ in phase. The
process of spectral factorization (Oppenheim and Schafer, 1989) may be used to obtain the different
filters via finding the roots of |H(f)|. The number of possible factorizations increases as the length
of the filter L increases. Daubechies first choose an extremal phase factorization,7 whose resulting
wavelets we denote by D(L) where L is the length of the filter. An alternative factorization leads
to the least asymmetric class of wavelets, which we denote by LA(L).8 The D(4) wavelets have a
simple expression in the time domain via

h0 =
1 −

√
3

4
√

2
, h1 =

−3 +
√

3
4
√

2
, h2 =

3 +
√

3
4
√

2
and h3 =

−1 −
√

3
4
√

2
.

Figures 4 and 5 illustrate the LA(8) filter coefficients and the squared gain functions, respectively.
Note, the D(8) will have an identical squared gain function since it only differs from the LA(8) with
respect to its phase function. Contrasting the squared gain functions between Figures 3 and 5,
it is obvious that the LA(8) is a much better approximation to an ideal band-pass filter than the
Haar (less leakage). This improvement may lead to power gains in the unit root tests developed
in this paper. Throughout the rest of this paper, we use the Daubechies compactly supported
wavelet filters exclusively. Figure 6 illustrates wavelet filters associated with Daubechies families
of wavelets with lengths L ∈ {2, 4, 8}.9

2.2 Discrete wavelet transformation

In principle, wavelet analysis can be carried out in all arbitrary time scales. This may not be
necessary if only key features of the data are in question, and if so, discrete wavelet transformation
(DWT) is an efficient and parsimonious route as compared to the continuous wavelet transfor-
mation. The DWT is a subsampling of W (λ, t) with only dyadic scales, i.e., λ is of the form
2j−1, j = 1, 2, 3, . . . and, within a given dyadic scale 2j−1, t’s are separated by multiples of 2j .

Let y = {yt}T
t=1 be a dyadic length vector (T = 2M ) of observations where M = log2(T ). The

length T vector of discrete wavelet coefficients w is obtained by

w = Wy,
7The term extremal (or minimum) phase spectral factorization is associated with a solution to the roots of |H(f)|

that are all inside the unit circle (Daubechies, 1992, Ch. 6).
8Symmetric filters are known as linear phase filters in the engineering literature. The degree of asymmetry for a

filter may therefore be measured by the deviation from linearity of its phase. Least asymmetric filters are associated
with a phase that is as close to linear as possible (Daubechies, 1992, Ch. 8).

9Tables 4.1 and 4.2 in Gençay et al. (2001) provide selected Daubechies wavelet filters.
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where W is a T × T real-valued orthonormal matrix defining the DWT which satisfies WTW = IT
(T × T identity matrix).10 The vector of wavelet coefficients may be organized into M + 1 vectors,

w = [w1,w2, . . . ,wM ,vM ]T , (14)

where wj is a vector of wavelet coefficients associated with changes on a scale of length λj = 2j−1

and vM is a vector of scaling coefficients associated with averages on a scale of length 2M = 2λM .
For a general wavelet filter {hl}L−1

l=0 , the boundary-independent (BI) scale-1 wavelet and scaling
coefficients are given by

Wt,1 =
L−1∑

l=0

hly2t+1−l Vt,1 =
L−1∑

l=0

gly2t+1−l (15)

where t = (L − 2)/2, (L − 2)/2 + 1, . . . , T/2 − 1. Similarly, the level j BI wavelet and scaling
coefficients of {yt} are given by

Wt,j =
L(j)−1∑

l=0

hj,ly2jt+1−l Vt,j =
L(j)−1∑

l=0

gj,ly2jt+1−l (16)

where L(j) = (2j − 1)(L− 1) + 1 is the length of the level j wavelet filter {hj,l}.

2.3 Analysis of variance

The orthonormality of the matrix W implies that the DWT is a variance preserving transformation
where

‖w‖2 = V 2
t,M +

M∑

j=1




T/2j∑

t=1

W 2
t,j


 =

T∑

t=1

y2
t = ‖y‖2 .

This can be easily proven through basic matrix manipulation via

‖y‖2 = yTy = (Ww)TWw

= wTWTWw = wTw = ‖w‖2 .

Given the structure of the wavelet coefficients, ‖y‖2 is decomposed on a scale-by-scale basis via

‖y‖2 =
M∑

j=1

‖wj‖2 + ‖vM‖2 , (17)

where ‖wj‖2 is the sum of squared variation of y due to changes at scale λj and ‖vM‖2 is the
information due to changes at scales λM and higher.

10Since DWT is an orthonormal transform, orthonormality implies that y = WT w and ||w||2 = ||y||2.
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The motivation behind a wavelet based unit root test can be illustrated through the energy
(variance) decomposition of the process at a given level of decomposition J < M . For a white noise
process, ‖vJ‖2 / ‖y‖2 is close to zero whereas ‖vJ‖2 / ‖y‖2 is close to one for a unit root process.
In Figure 7, the dot chart of a Gaussian white noise process is plotted for 1024 observations
(M = 210 = 1024). A six level (J = 6) discrete wavelet decomposition (DWT) is used. “Data”
represents the total energy of the data which is normalized at one. wi, i = 1, . . . , 6 represents the
percentage energy of wavelet coefficients. v6 is the percentage energy of the scaling coefficients.
The sum of the energies of the wavelet and the scaling coefficients is equal to the total energy of
the data. The energy is the highest at the highest frequency wavelet coefficient (w1) and declines
gradually towards the lowest frequency wavelet coefficient (w6). The percentage energy of the
scaling coefficient (v6) is close to zero.

In Figure 8, the dot chart of a unit root process

yt = yt−1 + ut, ut ∼ iidN(0, 1) (18)

is plotted for y0 = 0 and t = 1, 2, . . . , 1024 observations. The energy is the highest for the scaling
coefficients and almost zero at all wavelet coefficients. The percentage energy of the scaling coeffi-
cients (v6) is almost equal to the energy of the data.11 The number of coefficients needed equals
41 (41/1024 = 4%) of the total number of coefficients to account for almost all energy of the data.

Since a unit root process can be succinctly approximated by a few scaling coefficients and the
energy of the scaling coefficients is almost equal to the total energy of the data, our statistical test
for a unit root process is based on this principle of energy decomposition.

3 New Unit Root Tests — No Drift Case

Let {yt}T
t=1 be a univariate time series generated by

yt = ρyt−1 + ut, (19)

where {ut} is a weakly stationary zero-mean error with a strictly positive long run variance defined
by ω2 ≡ γ0 + 2

∑∞
j=1 γj where γj = E(utut−j). Throughout this paper, the initial condition is

set to y0 = Op(1) and the following assumption on the error term is maintained. Also, we use
the symbols =⇒ and −→ to denote convergence of the associated probability measures and
convergence in probability respectively. All the limits are taken as the sample size approaches ∞.

11When a white noise process is added up (say, as in a unit root process), the high frequencies are smoothed out
(those spikes in the white noise disappear) and what is left is the long term stochastic trend. On the contrary, when
we do differencing (e.g., first differencing to a unit root, then we are back to the white noise series), we get rid of the
long term trend, and what is left is the high frequencies (spikes) with mean zero.
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Assumption 1:

(a) {ut} is a linear process defined as ut = ψ(L)εt =
∑∞

j=0 ψjεt−j , ψ(1) 6= 0, and
∑∞

j=0 j|ψj| <∞;

(b) {εt} is i.i.d. with E(εt) = 0, V ar(εt) = σ2, and finite fourth cumulants, and εs = 0 for s ≤ 0.

The last condition in Assumption 1(a) is referred to as 1-summability of ψ(L). Under Assump-
tion 1, we have ω2 = ψ(1)2σ2 and T−1/2

∑[Tr]
t=1 ut =⇒ ωW (r) where [Tr] denotes the integer part

of Tr and W (r) denotes a standard Brownian motion defined on C[0, 1]. It is known that the weak
convergence result: T−1/2

∑[Tr]
t=1 ut =⇒ ωW (r) holds for more general/other classes of processes

than the class of linear processes specified in Assumption 1. It is possible to extend the results
to be developed in this paper to these other processes. For ease of exposition, we will stick to
Assumption 1 in this paper.

In this section, we consider tests for H0 : ρ = 1 against H1 : |ρ| < 1. Therefore, under the
alternative hypothesis, {yt} is a zero-mean stationary process with the long run variance (1− ρ)−2

ω2. As mentioned above, our tests for unit root are based on the different behavior of the energy
decomposition of a unit root process and that of a short-memory such as a white noise process.
Different tests can be constructed depending on (i) the wavelet filter being used to decompose the
time series; and (ii) the level of DWT of the time series. To introduce the fundamental idea, we
first develop a test based on the Haar wavelet filter and unit scale DWT and then extend it to tests
based on any Daubechies (1992) compactly supported wavelet filter of finite length and the DWT
of any finite level.

3.1 The first test — Haar wavelet filter and the DWT of unit scale

Consider the unit scale Haar DWT of {yt}T
t=1 where T is assumed to be even. The wavelet and

scaling coefficients are given by

Wt,1 =
1√
2
(y2t − y2t−1), t = 1, 2, . . . , T/2, (20)

Vt,1 =
1√
2
(y2t + y2t−1), t = 1, 2, . . . , T/2. (21)

The wavelet coefficients {Wt,1} capture the behavior of {yt} in the high frequency band [1/2, 1],
while the scaling coefficients {Vt,1} capture the behavior of {yt} in the low frequency band [0, 1/2].
The total energy of {yt}T

t=1 is given by the sum of the energies of {Wt,1} and {Vt,1}. Since for a unit
root process, the energy of the scaling coefficients {Vt,1} dominates that of the wavelet coefficients
{Wt,1} , we propose the following test statistic:

ŜT,1 =

∑T/2
t=1 V

2
t,1∑T/2

t=1 V
2
t,1 +

∑T/2
t=1 W

2
t,1

. (22)

11



Heuristically, under H0, ŜT,1 should be close to 1, since
∑T/2

t=1 V
2
t,1 dominates

∑T/2
t=1 W

2
t,1, while under

H1, ŜT,1 should be much smaller than 1. We formalize these statements in the following lemma.

Lemma 3.1 Under H0, ŜT,1 = 1+op(1), while under H1, ŜT,1 = E(y2t+y2t−1)2

E(y2t+y2t−1)2+E(y2t−y2t−1)2
+op(1).

Noting the inequality: E(y2t+y2t−1)2

E(y2t+y2t−1)2+E(y2t−y2t−1)2
< 1, we expect our tests based on ŜT,1 to have

power against H1. Below, we provide the main steps of a proof of Lemma 3.1, because the funda-
mental idea of this paper is easily grasped from this proof. Suppose H0 holds; ρ = 1 and hence
yt = yt−1 + ut. Equations (20) and (21) imply:

Wt,1 =
1√
2
u2t and Vt,1 =

1√
2
(2y2t−1 + u2t). (23)

Using Equation (23), together with Equation (22), we obtain

ŜT,1 =

∑T/2
t=1 V

2
t,1∑T/2

t=1 V
2
t,1 + 1

2

∑T/2
t=1 u

2
2t

, (24)

where

T/2∑

t=1

V 2
t,1 =

1
2
{4

T/2∑

t=1

y2
2t−1 + 4

T/2∑

t=1

u2ty2t−1 +
T/2∑

t=1

u2
2t}

≡ 2AT + 2BT +
1
2
CT , (25)

in which

AT =
T/2∑

t=1

x2
t , BT =

T/2∑

t=1

u2txt, CT =
T/2∑

t=1

u2
2t

with xt ≡ y2t−1 for t = 1, 2, . . . , T/2. In the Appendix, we show that under H0,

AT = Op(T 2), BT = Op(T ), CT = Op(T ). (26)

Hence under H0, we get
∑T/2

t=1 V
2
t,1 = Op(T 2) and

∑T/2
t=1 W

2
t,1 = Op(T ), implying that the energy of

the scaling coefficients dominates that of the wavelet coefficients as mentioned above. Consequently,

ŜT,1 =
T−2

∑T/2
t=1 V

2
t,1

T−2(
∑T/2

t=1 V
2
t,1 +

∑T/2
t=1 W

2
t,1)

= 1 + op(1). (27)

The orders stated in (26) are easily understood, given that {u2t} is a linear, short memory stationary
process and {xt} can be easily shown to be a unit root process, i.e., xt = xt−1 + vt, where

vt = u2t−2 + u2t−1, t = 1, ...,
T

2
.

12



The detailed proofs of (26) are given in the Appendix.
Now consider what happens under H1. In this case, |ρ| < 1 so that yt = ρyt−1 + ut and {yt} is

a stationary short memory process. Thus, under H1, both {Vt,1} and {Wt,1} are stationary, short
memory processes and by the Law of Large Numbers, we get

∑T/2
t=1 V

2
t,1 = Op(T ) and

∑T/2
t=1 W

2
t,1 =

Op(T ) leading to:

ŜT,1 =

(
T
2

)−1∑T/2
t=1 V

2
t,1

(
T
2

)−1∑T/2
t=1 V

2
t,1 +

(
T
2

)−1∑T/2
t=1 W

2
t,1

−→
E(V 2

t,1)
E(V 2

t,1) + E(W 2
t,1)

=
E(y2t + y2t−1)2

E(y2t + y2t−1)2 + E(y2t − y2t−1)2
. (28)

To sum up, it is the relative magnitude of the energy of the scaling coefficients to that of the
wavelet coefficients that determines the power of the test based on ŜT,1. To establish the asymptotic
distribution of ŜT,1 under H0, we note that

ŜT,1 − 1 = −
CT /2− T

4 γ0

2AT + 2BT + CT
−

T
4 γ0

2AT + 2BT + CT
,

where CT =
∑T/2

t=1 u
2
2t and E(CT ) = T

2E(u2
2t) = T

2 γ0, in which γ0 = σ2
∑∞

s=0 ψ
2
s . Hence,

(
T

2

)
(ŜT,1 − 1) = −

(T/2)−1
(
CT /2− T

4 γ0

)

2(T/2)−2(AT +BT + CT /2)
−

1
2γ0

2(T/2)−2(AT + BT + CT /2)

= − op(1)

λ2
v

∫ 1
0 [W (r)]2dr

−
1
2γ0

λ2
v

∫ 1
0 [W (r)]2dr

= − γ0

2λ2
v

∫ 1
0 [W (r)]2dr

+ op(1),

where λ2
v = 4ω2. This result is summarized in the following theorem.

Theorem 3.2 Under H0, T (ŜT,1 − 1) = − γ0

λ2
v

∫ 1
0 [W (r)]2dr

+ op(1), where λ2
v = 4ω2.

The above proof makes it clear that it is the energy of the scaling coefficients that drives the asymp-
totic behavior of ŜT,1 under the null hypothesis. Alternatively, noting the energy decomposition:

13



∑T/2
t=1 V

2
t,1 +

∑T/2
t=1 W

2
t,1 =

∑T
t=1 y

2
t , we get immediately,

T (ŜT,1 − 1) = −
T−1

∑T/2
t=1

(
W 2

t,1 − EW 2
t,1

)

T−2
∑T

t=1 y
2
t

−
1
2EW

2
t,1

T−2
∑T

t=1 y
2
t

= − op(1)

ω2
∫ 1
0 [W (r)]2dr

− γ0

4ω2
∫ 1
0 [W (r)]2dr

= − γ0

λ2
v

∫ 1
0 [W (r)]2dr

+ op(1) under H0.

There are two unknown parameters in the asymptotic null distribution of ŜT,1: γ0 = E(u2
2t)

and λ2
v or ω2. To estimate these parameters, we let ût = yt − ρ̂yt−1 denote the OLS residual. Then

γ̂0 = T−1
∑T

t=1 û
2
t is a consistent estimator of γ0. Being the long run variance of {ut} , ω2 can be

consistently estimated by a nonparametric kernel estimator with the Bartlett kernel:

ω̂2 = 4γ̂0 + 2
q∑

j=1

[1 − j/(q + 1)]γ̂j,

where q is the bandwidth/lag truncation parameter and γ̂j = T−1
∑T

t=j+1 ûtût−j , see Newey and
West (1987). Andrews (1991) showed that this long run variance estimator is consistent when the
bandwidth q grows at a rate slower than T 1/2, with an optimal growth rate being T 1/3 under some
moment conditions. Let λ̂2

v = 4ω̂2 and define the test statistic as

FG1 =
Tλ̂2

v

γ̂0

[
ŜT,1 − 1

]
.

Then under the null hypothesis, the limiting distribution of the test statistic FG1 is given by the
distribution of

− 1∫ 1
0 [W (r)]2dr

.

The limiting distribution of FG1 under H0 is extremely easy to simulate.12 Draw a large sample
of i.i.d. random numbers from N(0, 1) denoted as {zi}N

i=1. Compute the following quantity:

−1

N−2
∑N

i=1

(∑i
s=1 zs

)2 .

Simulate the above quantity a large number of times and use the resulting empirical distribution to
approximate the null limiting distribution of FG1. We note that an alternative way to estimate γ0

is via the wavelet variance estimators. We will elaborate on this approach in the next subsection
when we allow the use of a general filter.

12Please see MacKinnon (2000) for a detailed treatment.
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3.2 General filter case: unit scale decomposition

For a general wavelet filter {hl}L−1
l=0 , the boundary-independent (BI) unit scale wavelet and scaling

coefficients are given by

Wt,1 =
L−1∑

l=0

hly2t+1−l, Vt,1 =
L−1∑

l=0

gly2t+1−l, (29)

where t = (L − 2)/2, (L − 2)/2 + 1, . . . , T/2 − 1. Again the wavelet coefficients {Wt,1} extract
the high frequency information in {yt}. Since any Daubechies wavelet filter has a difference filter
embedded in it, {Wt,1} is stationary under both H0 and H1. However the sequence of scaling
coefficients {Vt,1}, extracting the low frequency information in {yt}, is nonstationary under H0

and stationary under H1. Reflected in their respective energies, this implies that the energy of the
scaling coefficients dominates that of the wavelet coefficients under H0, which forms the basis for
our tests.
Let L1 = (L− 2)/2 denote the number of boundary dependent coefficients. Define

ŜL
T,1 =

∑T/2−1
t=L1

V 2
t,1∑T/2−1

t=L1
V 2

t,1 +
∑T/2−1

t=L1
W 2

t,1

.

We will construct a test for unit root based on ŜL
T,1.

Theorem 3.3 (i) ŜL
T,1 = 1+op(1) under the null hypothesis of unit root and ŜL

T,1 = cL+op(1) under

the alternative hypothesis with cL =
EV 2

t,1

EV 2
t,1+EW 2

t,1
< 1; (ii)

(
T
2

)
(ŜL

T,1 − 1) = − EW 2
t,1

λ2
v

∫ 1
0

[W (r)]2dr
+ op(1)

under the null hypothesis.

The proof of Theorem 3.3(i) is given in the Appendix. It implies that a consistent test for
unit root can be based on ŜL

T,1. Theorem 3.3(ii) extends Theorem 3.2 from the Haar filter to any
Daubechies compactly supported wavelet filter of finite length. Since as the length of the filter
increases, the approximation of the Daubechies wavelet filter to the ideal high-pass filter improves,
we expect tests based on ŜL

T,1 to gain power over the test based on the Haar filter for L ≥ 4.
The proof of Theorem 3.3(ii) is outlined below. Since under the null hypothesis,

1
T 2

T/2−1∑

t=L1

V 2
t,1 =

2
T 2

T/2−1∑

t=L1

y2
2t+2−L + op(1),

the asymptotic distribution of 1
T 2

∑T/2−1
t=L1

V 2
t,1 is given by that of 2AL

T ≡ 2
T 2

∑T/2−1
t=L1

y2
2t+2−L. Similar

to the derivation of the asymptotic distribution of AT , one can show that
(
T

2

)−2

AL
T =⇒ 1

2
λ2

v

∫ 1

0
[W (r)]2dr.
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On the other hand, by the LLN for a stationary process, we get

(
T

2

)−1



T/2−1∑

t=L1

(W 2
t,1 − EW 2

t,1)


 = op(1).

Hence under the null hypothesis,

(
T

2

)
(ŜL

T,1 − 1) = −
(

T
2

)−1∑T/2−1
t=L1

(W 2
t,1 − EW 2

t,1)(
T
2

)−2
(∑T/2−1

t=L1
V 2

t,1 +
∑T/2−1

t=L1
W 2

t,1

) −
(

T
2

)−1
(T/2− L1)EW 2

t,1(
T
2

)−2
(∑T/2−1

t=L1
V 2

t,1 +
∑T/2−1

t=L1
W 2

t,1

)

= − op(1)

λ2
v

∫ 1
0 [W (r)]2dr

−
EW 2

t,1

λ2
v

∫ 1
0 [W (r)]2dr

= −
EW 2

t,1

λ2
v

∫ 1
0 [W (r)]2dr

+ op(1).

Note that EW 2
t,1 equals twice of the so-called wavelet variance at the unit scale. As a result,

existing wavelet variance estimators can be used to estimateEW 2
t,1, see Percival (1995) for a detailed

comparison of the wavelet variance estimators based on DWT and MODWT respectively. Based
on DWT, 2υ̂2

y,1 is a consistent estimator of the wavelet variance, where

υ̂2
y,1 =

1
(T/2− L1)

T/2−1∑

t=L1

W 2
t,1. (30)

Define the test statistic:

FGL
1 =

(
T

2

)
λ̂2

v

υ̂2
y,1

[
ŜT,1 − 1

]
.

Under the null hypothesis, the limiting distribution of FGL
1 is the same as that of FG1. Percival

(1995) showed that the wavelet variance estimator based on MODWT is more efficient than that
based on DWT which may lead to power gains in finite samples for our test.

An alternative test is based on a modification of (ŜL
T,1 − 1). Define D̂L

T,1 as follows:

D̂L
T,1 = −

∑T/2−1
t=L1

W 2
t,1∑T

t=1 y
2
t

.

Then we can easily show that Theorem 3.3 holds for D̂L
T,1. A further modification would be to

include the boundary dependent coefficients in the numerator of the above expression. This will
not affect the asymptotic properties of the tests, but may affect their finite sample performance in
particular when the length of the wavelet filter is long.
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3.3 General filter case: Higher scale decomposition

The above tests make use of the unit scale DWT and hence the energy decomposition of {yt} into
frequency bands [0, 1/2] and [1/2, 1]. Heuristically, these tests are suitable for testing a unit root
process against alternatives that have most energy concentrated in the frequency band [1/2, 1]. To
distinguish between a unit root process and a ‘strongly’ dependent process that has substantial
energy in frequencies close to zero, we need to further decompose the low frequency band [0, 1/2].
DWT of higher scales provides a useful device. We consider DWT of a finite scale J. Let {Wt,j}
denote the scale j BI wavelet coefficients of the {yt}, i.e.,

Wt,j =
L(j)−1∑

l=0

hj,ly2jt+1−l,

where L(j) = (2j − 1)(L− 1) + 1 is the length of the level j wavelet filter {hj,l}. Similarly we use
{Vt,j} to denote the level j BI scaling coefficients of the {yt}, i.e.,

Vt,j =
L(j)−1∑

l=0

gj,ly2jt+1−l. (31)

Generalizing the tests developed in the previous subsection, we will consider the following statistic:

ŜL
T,J =

∑T/2J−1
t=LJ

V 2
t,J

∑T/2J−1
t=LJ

V 2
t,J +

∑J
j=1

(∑T/2j−1
t=Lj

W 2
t,j

)

where Lj denotes the number of boundary dependent coefficients at level j. The level J scaling
coefficients {Vt,J} summarize the behavior of {yt} in the frequency band [0, 1/2J], while the wavelet
coefficients at levels 1, 2, ..., J together summarize the behavior of the process {yt} in the frequency
band [1/2J , 1].

Similar to the proof for the unit scale case, we can show that under H0 :

(
T

2J

)
(ŜL

T,J − 1) = −

(
T
2J

)−1∑J
j=1

(∑T/2j−1
t=Lj

[
W 2

t,j − υ2
y,j

])
+
(

T
2J

)−1∑J
j=1

(∑T/2j−1
t=Lj

υ2
y,j

)

(
T
2J

)−2
{∑T/2J−1

t=LJ
V 2

t,J +
∑J

j=1

(∑T/2j−1
t=Lj

W 2
t,j

)}

= −
(

1
2J

)−1∑J
j=1

1
2j υ

2
y,j(

T
2J

)−2
{∑T/2J−1

t=LJ
V 2

t,J

} + op(1),

where υ2
y,j = EW 2

t,j. It remains to work out the limiting distribution of
(

T
2J

)−2
{∑T/2J−1

t=LJ
V 2

t,J

}
.

Suppose ρ = 1. Then

Vt,J = Y2J t+2−L(J)




L(J)−1∑

l=0

gJ,l


+

L(J)−2∑

l=0

gJ,l





L(J)−2−l∑

j=0

u2(J)t+1−j−l



 .
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Since
∑L(J)−1

l=0 gJ,l = 2J/2, we obtain

1
T 2

T/2J−1∑

t=LJ

V 2
t,J =

1
T 2

T/2J−1∑

t=LJ


2J/2y2J t+2−L(J) +

L(J)−2∑

l=0

gJ,l





L(J)−2−l∑

j=0

u2(J)t+1−j−l








2

=
2J

T 2

T/2J−1∑

t=LJ

y2
2J t+2−L(J) +

1
T 2

T/2J−1∑

t=LJ




L(J)−2∑

l=0

gJ,l





L(J)−2−l∑

j=0

u2(J)t+1−j−l








2

+
2J/2+1

T 2

T/2J−1∑

t=LJ


y2J t+2−L(J)

L(J)−2∑

l=0

gJ,l





L(J)−2−l∑

j=0

u2(J)t+1−j−l








=
2J

T 2

T/2J−1∑

t=LJ

y2
2J t+2−L(J) + op(1).

Hence,

(
T

2J

)−2




T/2J−1∑

t=LJ

V 2
t,J



 = 2J

(
T

2J

)−2 T/2J−1∑

t=LJ

y2
2J t+2−L(J) + op(1)

= λ2
v,J

∫ 1

0
[W (r)]2dr + op(1),

where λ2
v,J = 4Jω2. Consequently,

(
T

2J

)
(ŜL

T,J − 1) = −
(

1
2J

)−1∑J
j=1

1
2j υ

2
y,j(

T
2J

)−2
{∑T/2J−1

t=LJ
V 2

t,J

} + op(1)

= −
(

1
2J

)−1∑J
j=1

1
2j υ

2
y,j

λ2
v,J

∫ 1
0 [W (r)]2dr

+ op(1).

Let λ̂2
v,J = 4J ω̂2 and υ̂2

y,j denote a consistent estimator of υ2
y,j , j = 1, ..., J. The test statistic is

defined as

FGL
J =

Tλ̂2
v,J

4J
∑J

j=1
1
2j υ̂

2
y,j

(ŜL
T,J − 1)

whose limiting distribution under the null hypothesis is the same as that of FGL
1 . Obviously, if

J = 1, then FGL
J = FGL

1 defined earlier.
An alternative test can be constructed based on a modification of (ŜL

T,J − 1), i.e.,

D̂L
T,J = −

∑J
j=1

(∑T/2j−1
t=Lj

W 2
t,j

)

∑T
t=1 y

2
t

.
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It is easy to show that under H0,

TD̂L
T,J =⇒ −

4J
∑J

j=1
1
2j υ

2
y,j

λ2
v,J

∫ 1
0 [W (r)]2dr

.

3.4 Power of the tests

We now develop asymptotic power functions for unit root tests by considering the sequence of local
alternatives given by

ρ = exp
( c
T

)
∼ 1 +

c

T
(32)

for a particular value of c < 0. Under this sequence of local alternatives, it is well known that

T−2
T∑

t=1

y2
t =⇒ ω2

∫ 1

0
[Jc(r)]

2 dr,

where
Jc(r) =

∫ r

0
exp {(r− u)c}dW (u)

is the Ornstein-Uhlenbeck process generated in continuous time by the stochastic differential equa-
tion dJc(r) = cJc(r)dr+ dW (r). Using this, one can easily show that under this sequence of local
alternatives, the asymptotic distributions of the test statistics developed in the previous subsections
are of the same form as those under the null hypothesis except that the Brownian motion W (·) is
replaced with the Ornstein-Uhlenbeck process Jc(·), i.e., −1/

∫ 1
0 [Jc(r)]

2 dr. In particular, this leads
to the conclusion that all these tests have the same asymptotic power (to the first order) against
the sequence of local alternatives of the form (32) and their asymptotic power is the same as that
of Sargan and Bhargava test. As a result, any power difference among these tests must be deter-
mined via alternatives routes such as higher order asymptotic power functions, local alternatives
of a different form, or Monte-Carlo simulation. We will explore the last approach in Section 6.

4 Incorporating a Drift Term

Let {yt}T
t=1 be a univariate time series generated by

yt = α+ ρyt−1 + ut, (33)

where {ut} satisfies Assumption 1. In this section, we first construct tests for H0 : ρ = 1 against
H1 : |ρ| < 1 for any given α 6= 0. Therefore, under the alternative hypothesis, {yt} is a stationary
process with a non-zero mean and the long run variance ω2

y = (1− ρ)−2 ω2. We then develop tests
that have power against trend stationary alternatives.
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4.1 Haar filter case: unit scale decomposition

As in the no-intercept case, we use ŜT,1 defined in (24) as the basis for our test. Because of the
presence of the intercept term, the asymptotic distribution of ŜT,1 under H0 will be different from
that when there is no intercept, leading to a completely different test. To be specific, note that
under H0, yt = α + yt−1 + ut implying yt = y0 + αt +

∑t
j=1 uj . As a result, the process {xt} is

characterized by:

xt = y2t−1 = y0 + α(2t− 1) +
2t−1∑

j=1

uj .

Using the above expression, one can show that

AT =
T1∑

t=1

x2
t = α2

T1∑

t=1

(2t− 1)2 + op(T 3)

=
4
3
α2T 3

1 + op(T 3).

Recall the following expression:

ŜT,1 − 1 = − CT /2
2AT + 2BT + CT

= −
CT /2 − T

4E(α+ u2t)2

2AT + 2BT + CT
−

T
4E(α+ u2t)2

2AT + 2BT + CT

≡ −1
2
FT − 1

2
ST . (34)

It is easy to show that

T
5/2
1 FT =

T
−1/2
1

∑T1
t=1

[
(α+ u2t)2 − E(α+ u2t)2

]

T 3
1 (2AT + 2BT + CT )

=
N(0, σ2

∗)
8α2/3

+ op(1), (35)

where σ2
∗ is the long run variance of

{
(α+ u2t)2

}
. The second term satisfies

T 2
1ST =

E(α+ u2t)2

T−3
1 [2AT + 2BT + CT ]

=
E(α+ u2t)2

8α2/3
+ op(1). (36)

The following lemma follows immediately from Equations (34), (35), and (36).

Lemma 4.1 Under H0, (i) T 2
1

(
ŜT,1 − 1

)
= −3E(α+u2t)2

16α2 + op(1); (ii) T 5/2
1

(
ŜT,1 − 1 + 1

2ST

)
=

−3N(0,σ2
∗)

16α2 + op(1).

The first result in Lemma 4.1 is not useful for the construction of a proper test, because the
limiting distribution is degenerate. The second result gives a non-degenerate limiting distribution,
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but involves an unknown term ST in the center. We need to find an estimator of ST with a
convergence rate faster than T−5/2

1 . To achieve this, we suggest the following procedure. Given the
sample size T , choose T ∗ such that T ∗/T = o(1). Construct ŜT ∗,1 using the first T ∗ observations.
Then Lemma 4.1(ii) implies:

(T ∗
1 )5/2

(
ŜT ∗,1 − 1 +

1
2
ST ∗

)
=⇒ −3N(0, σ2

∗)
16α2

,

where

ST ∗ =
2T ∗

1EW
2
t,1∑T ∗/2

t=1 V 2
t,1 +

∑T ∗/2
t=1 W 2

t,1

=
2T ∗

1EW
2
t,1∑T ∗

t=1 y
2
t

.

We need to estimate ST ∗ with a convergence rate faster than (T ∗
1 )−5/2. For this purpose, we use

the whole sample {yt}T
t=1 to construct the unit scale wavelet coefficients: {Wt,1}T1

t=1 and estimate
ST ∗ by

ŜT ∗ =
2T ∗

1

∑T1
t=1W

2
t,1

T1
∑T ∗

t=1 y
2
t

.

Since

(T ∗
1 )5/2

(
ŜT ∗ − ST ∗

)
= (T ∗

1 )5/2

[
2T ∗

1

∑T1
t=1(W

2
t,1 −EW 2

t,1)

T1
∑T ∗

t=1 y
2
t

]

=

[
2T ∗1/2

1

∑T1
t=1(W

2
t,1 −EW 2

t,1)

T1(T ∗
1 )−3

∑T ∗

t=1 y
2
t

]

= Op

(
T ∗1/2

1

T
1/2

1

)

= op(1),

we get

(T ∗
1 )5/2

(
ŜT ∗,1 − 1 +

1
2
ŜT ∗

)
=⇒ −3N(0, σ2

∗)
16α2

.

Now, let α̂ be an estimator of α and σ̂2
∗ be an estimator of σ2

∗. Then the test statistic is given by

FGL
M (drift) = −

16α̂2(T ∗
1 )5/2

(
ŜT ∗,1 − 1 + 1

2ŜT ∗

)

3σ̂∗

and the limiting distribution of FGL
M (drift) under H0 is the standard normal. Compared with tests

in the no-drift case developed above, implementation of the tests in the drift case is complicated
by the fact that one has to choose T ∗ and the only requirement for the asymptotic theory to hold
is T ∗/T = o(1). Of course, the choice of T ∗ in finite samples would affect the power of the tests.
An appropriate data-driven method for choosing T ∗ is definitely an important issue, although it is
beyond the scope of the current paper.
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4.2 General filter case: unit scale decomposition

Similar to the Haar case, using yt = y0 + αt+
∑t

j=1 uj under H0, we can establish the order of the
energy of the scaling coefficients:

T1−1∑

t=L1

V 2
t,1 = 2α2

T1−1∑

t=L1

(2t+ 1)2 + op(T 3) =
8α2

3
T 3

1 + op(T 3).

Decomposing ŜL
T,1 as follows:

ŜL
T,1 − 1 = −

∑T/2−1
t=L1

(W 2
t,1 − EW 2

t,1)∑T/2−1
t=L1

V 2
t,1 +

∑T/2−1
t=L1

W 2
t,1

−
(T/2− L1)EW 2

t,1∑T/2−1
t=L1

V 2
t,1 +

∑T/2−1
t=L1

W 2
t,1

= −FL
T − SL

T ,

we immediately get the following results:

T
5/2
1 FL

T =
T
−1/2
1

∑T/2−1
t=L1

(W 2
t,1 −EW 2

t,1)

T−3
1

∑T/2−1
t=L1

V 2
t,1 + T−3

1

∑T/2−1
t=L1

W 2
t,1

=
N(0, σ2

∗W)
8α2/3

+ op(1),

T 2
1S

L
T =

T−1
1 (T/2− L1)EW 2

t,1

T−3
1

∑T/2−1
t=L1

V 2
t,1 + T−3

1

∑T/2−1
t=L1

W 2
t,1

=
EW 2

t,1

8α2/3
+ op(1),

where σ2
∗W is the long run variance of the process

{
W 2

t,1

}
.

Summarizing these results, we obtain the Lemma below, extending Lemma 4.1 to any Daubechies
compactly supported wavelet filter of finite length. Following exactly the same procedure as in the
Haar filter case, the Lemma below provides the basis for testing H0.

Lemma 4.2 UnderH0, (i) T 2
1

(
ŜL

T,1 − 1
)

= −3EW 2
t,1

8α2 +op(1); (ii) T 5/2
1

(
ŜL

T,1 − 1 + SL
T

)
= −3N(0,σ2

∗W )

8α2 +
op(1).

4.3 Tests against trend stationarity

Note that under H0, model (33) implies that yt = y0 + αt +
∑t

j=1 uj . Thus yt has a linear
deterministic trend and a stochastic trend. Under the alternative, however, model (33) implies
that the process {yt} is a stationary process with a non-zero mean. If one tests H0 against the
alternative hypothesis of a (linear) trend stationary process, then the above tests may not have
power. To deal with trend stationary alternatives, components representation of a time series is
often used and detrending performed, see Schmidt and Phillips (1992), Phillips and Xiao (1998),
and Stock (1999). Phillips and Xiao (1998) also have a detailed discussion on efficient detrending
for general trends. For ease of exposition, we restrict ourselves to non-zero mean and linear trend
cases only.
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The process {yt} is of the form:
yt = µ + αt + ys

t , (37)

where {ys
t } is generated by model (19). Under H0 : ρ = 1, {ys

t } is a unit root process while
under H0 : |ρ| < 1, {ys

t } is a zero mean stationary process. If α = 0, we consider the demeaned
series {yt − y} , where y = T−1

∑T
t=1 yt is the sample mean of {yt}. If α 6= 0, we work with the

detrended series
{
ỹt − ỹ

}
, where ỹt =

∑t
j=1

(
∆yj − ∆y

)
and ỹ is the sample mean of {ỹt}, in which

∆yt = yt − yt−1 and ∆y is the sample mean of {∆yt} . Alternative expressions for the detrended
series

{
ỹt − ỹ

}
can be found in Schmidt and Phillips (1992).

Let
{
WM

t,1

}
and

{
VM

t,1

}
denote respectively the unit scale DWT wavelet and scaling coefficients

of the demeaned series {yt − y}. We will construct our tests based on

D̂LM
T,1 = −

∑T/2
t=1(WM

t,1)2
∑T

t=1(yt − y)2
.

Similarly, let
{
W d

t,1

}
and

{
V d

t,1

}
denote respectively the unit scale DWT wavelet and scaling coef-

ficients of the detrended series
{
ỹt − ỹ

}
. We will construct our tests based on

D̂Ld
T,1 = −

∑T/2
t=1(W d

t,1)
2

∑T
t=1(ỹt − ỹ)2

.

UnderH0, it is known that T−2
∑T

t=1(yt−y)2 =⇒ ω2
∫ 1
0 [Wµ(r)]2 dr and T−2

∑T
t=1(ỹt−ỹ)2 =⇒

ω2
∫ 1
0 [Vµ(r)]2 dr, where Wµ(r) = W (r) −

∫ 1
0 W (u)du and Vµ(r) = V (r) −

∫ 1
0 V (u)du in which

V (r) = W (r) − rW (1).

Theorem 4.3 Under H0, we have: (i) T
(
D̂LM

T,1

)
=⇒ − E(W M

t,1)
2

2ω2
∫ 1
0 [Wµ(r)]2dr

and (ii) T
(
D̂Ld

T,1

)
=⇒

− E(W d
t,1)2

2ω2
∫ 1
0

[Vµ(r)]2dr
.

The above theorem can be easily extended to (i) DWT of any finite scale J and (ii) a general
trend in (39) using the detrending procedure discussed in Phillips and Xiao (1998). To estimate
ω2, we take the OLS residuals from a regression of yt on a linear trend and yt−1 and then apply a
nonparametric kernel estimator with the Bartlett kernel to the residuals.

5 Maximum Overlap DWT

MODWT has been demonstrated to have advantages over DWT in several situations including the
estimation of wavelet variance.13 Apart from a factor of

√
2, the BI unit scale MODWT wavelet

13See Allan (1966), Howe and Percival (1995), Percival (1983), Percival and Guttorp (1994) and Percival (1995).
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and scaling coefficients are given by

W̃t,1 =
L−1∑

l=0

hlyt+1−l, Ṽt,1 =
L−1∑

l=0

glyt+1−l, (38)

where t = (L− 2), (L− 2) + 1, . . . , T − 1. It is easy to see that the DWT coefficients are obtained
from the corresponding MODWT coefficients via downsampling by 2. At each scale, there are T
MODWT wavelet coefficients and T MODWT scaling coefficients. In this section, we will exploit
these unit scale MODWT coefficients to construct tests for unit root. Extensions to higher scale
MODWT are straightforward and are omitted for space considerations.

Let

S̃L
T,1 =

∑T−1
t=L−2 Ṽ

2
t,1∑T−1

t=L−2 Ṽ
2
t,1 +

∑T−1
t=L−2 W̃

2
t,1

.

We first consider the no-intercept case, then the intercept case, and finally trend-stationary alter-
natives. For the no-intercept case, following exactly the same derivation as in Subsection 3.2, we
obtain

1
T 2

T−1∑

t=L−2

Ṽ 2
t,1 =

2
T 2

T−1∑

t=L−2

y2
t+2−L + op(1) =⇒ λ2

v

2

∫ 1

0
[W (r)]2dr

so that under H0, we have

T (S̃L
T,1 − 1) = −

EW̃ 2
t,1

T−2
∑T−1

t=L−2 Ṽ
2
t,1

+ op(1) =⇒ −
2EW̃ 2

t,1

λ2
v

∫ 1
0 [W (r)]2dr

.

Since
{
W̃t,1

}
is a stationary process, EW̃ 2

t,1 = EW 2
t,1, implying that under the null hypothesis,

the following holds:

F̃G
L

1 ≡
Tλ̂2

v(S̃
L
T,1 − 1)

2ṽ2
y,1

=⇒ − 1∫ 1
0 [W (r)]2dr

,

where

ṽ2
y,1 =

1
(T − L)

T−1∑

t=L−1

W̃ 2
t,1.

It is interesting to note that the test statistic F̃G
L

1 is of exactly the same form as that of FGL
1

except that the former uses MODWT while the latter uses DWT and both have the same limiting
distribution under the null hypothesis.

Alternatively, noting that
∑T−1

t=1 Ṽ 2
t,1 +

∑T−1
t=1 W̃

2
t,1 = 2

∑T
t=1 y

2
t , we can modify (S̃L

T,1 − 1) and
employ the following test statistic:

D̃L
T,1 =

∑T−1
t=L−2 W̃

2
t,1

2
∑T

t=1 y
2
t

.
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Under H0, T D̃
L
T,1 =⇒ − 2EW̃ 2

t,1

λ2
v

∫ 1
0 [W (r)]2dr

.

Now consider the case with an intercept. By following the same arguments as in Section 4, we
get

∑T−1
t=L−2 Ṽ

2
t,1 = 2α2T 3

3 + op(T 3). Decomposing S̃L
T,1 as below,

S̃L
T,1 − 1 = −

∑T−1
t=L−2[W̃

2
t,1 −EW̃ 2

t,1]∑T−1
t=L−2 Ṽ

2
t,1 +

∑T−1
t=L−2 W̃

2
t,1

−
TEW̃ 2

t,1∑T−1
t=L−2 Ṽ

2
t,1 +

∑T−1
t=L−2 W̃

2
t,1

= −F̃L
T − S̃L

T ,

we get the following lemma, the basis of our tests for H0.

Lemma 5.1 UnderH0, (i) T 2
(
S̃L

T,1 − 1
)

= −3EW̃ 2
t,1

2α2 +op(1); (ii) T 5/2
(
S̃L

T,1 − 1 + S̃L
T

)
= −3N(0,σ̃2

∗W )

2α2 +

op(1), where σ̃2
∗W is the long run variance of the process

{
W̃ 2

t,1

}
.

Similar to the DWT case, we can also construct tests against non-zero mean stationary processes
and linear trend stationary processes based on MODWT of the demeaned and detrended series.
Let

{
W̃M

t,1

}
and

{
ṼM

t,1

}
denote respectively the unit scale DWT wavelet and scaling coefficients of

the demeaned series {yt − y}. We will construct our tests based on

D̃LM
T,1 = −

∑T/2
t=1(W̃M

t,1)2
∑T

t=1(yt − y)2
.

Similarly, let
{
W̃ d

t,1

}
and

{
Ṽ d

t,1

}
denote respectively the unit scale DWT wavelet and scaling

coefficients of the detrended series
{
ỹt − ỹ

}
. We will construct our tests based on

D̃Ld
T,1 = −

∑T/2
t=1(W̃ d

t,1)
2

∑T
t=1(ỹt − ỹ)2

.

One can easily show that underH0, T D̃
LM
T,1 =⇒ − E(W̃ M

t,1)
2

2ω2
∫ 1
0 [Wµ(r)]2dr

and TD̃Ld
T,1 =⇒ − E(W̃ d

t,1)
2

2ω2
∫ 1
0 [Vµ(r)]2dr

.

It is interesting to note that our tests based on the Haar wavelet filter are identical to the Sargan and
Bhargava (1983) and Bhargava (1986) tests. In view of the improved performance of the wavelet
filter as an approximation to the ideal band-pass filter when the length of the filter increases, we
expect power gains of our tests when a Daubechies filter other than the Haar is used.

6 Monte Carlo Simulations

In this section, we investigate the sampling performance of the new unit root tests and compare
them against the Augmented Dickey and Fuller (1979) (ADF), Phillips and Perron (1988) (PP),
Elliott et al. (1996) (ERS) and Ng and Perron (2001) (MPP) tests. We will study the no drift, the
drift and tests against trend stationarity with detrending.
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6.1 No Drift

The true process (data generating mechanism) is an AR(1) process without a drift

yt = ρyt−1 + ut, ut ∼ iidN(0, σ2)

when ρ = 1, the null hypothesis holds and the alternative hypothesis holds when |ρ| < 1. Since most
unit root tests are sensitive to the starting value of the unit root process, we draw the starting
values randomly from y0 ∼ N(0, 1) which permits a large range of starting values. To keep a
balance between the signal and noise components, we set σ2 = |y0|. Under the alternative, the data
is generated from yt = ρyt−1 + ut where ut ∼ iidN(0, 1) and y0 ∼ N(0, 1/(1− ρ2)).

The size and the power of the test are calculated for 100, 500 and 1,000 observations at the 1, 5
and 10 percent levels.14 For size calculations, no initial values are discarded from the simulations.
For power calculations, five times of sample size are discarded as transients.

Since y0 6= 0, the ADF (Augmented Dickey-Fuller) test requires a constant term in the test
regression. Accordingly, the asymptotic critical values of the ADF test with y0 6= 0 are -3.43, -2.86,
and -2.57 at the 1, 5, and 10 percent levels, respectively. In the calculation of the ADF test, the
lag length is set to one. The asymptotic critical values of our test, FGL

M , are -29.04, -17.75 and
-13.09 at the 1, 5, and 10 percent levels, respectively. These critical values are calculated from one
million replications. The asymptotic and finite sample distributions of the FGL

M test are illustrated
in Figure 9 where our test statistic has desirable size in small samples.

Table 1 compares the size and power of the FGL
M against the ADF and Phillips and Perron

(1988) (PP) tests. All simulations are with discrete wavelet transformation (DWT) at scale-1
(M = 1) and with the Haar filter. The actual size of our test is reasonably close to the nominal
size at 1%, 5% and 10% levels. The power gain of our test relative to the ADF and PP tests are
89% and 75% at the 5% level for ρ = 0.90 and T=100. For T = 500, we calculate the power for
alternatives much closer to the null than traditionally reported. Namely, the power calculations
are carried out for ρ = 0.99, 0.98 and 0.97. For ρ = 0.99 and ρ = 0.97, the powers of our test at the
5% level are 21.9% and 93.8%, respectively. These are 84% and 55% power gains relative to the
ADF test, and 71% and 51% relative to the PP test. For T = 1000, our test has a power of 68.4%
for ρ = 0.99 and reaches 99.7% power for ρ = 0.98. For ρ = 0.99, these are 111% and 103% power
improvements over the ADF and PP tests, respectively.

Table 2 contains results with the Haar, LA(10) and LA(20)15 filters. The LA(10) and LA(20)
are better band-pass filters than the Haar filter and therefore we expect these filters to have higher
power. The results indicate that both filters perform slightly better than the Haar filter for a
sample size of 100 observations. FGL

J (J = 4) test does slightly better than the FGL
J (J = 1) tests

14The limiting distribution of −1/
∫ 1

0
[W (r)]2dr is calculated from 1 million replications through the method

proposed in MacKinnon (2000). The simulated data for the null distribution is generated from yt = yt−1 + ut,
ut ∼ i.i.d.N(0, σ2) where y0 6= 0.

15Least asymmetric filters of length 10 and 20.
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as reported in Table 3. Although a higher scale decomposition is preferable, there should always be
a balance between the scale of decomposition and the number of observations due to the boundary
coefficients at the higher scales.16

6.2 With Drift

The true process is an AR(1) process with a drift

yt = α + ρyt−1 + ut

where the error term follows either an AR(1) or an MA(1) process

ut =





ρut−1 + εt

εt + θεt−1

where εt ∼ iidN(0, σ2). For ρ = 1, the null hypothesis holds and the alternative hypothesis holds
when |ρ| < 1. The starting value of the unit root process is drawn from y0 ∼ N(0, 1), α = 1 and
σ2 = 1. Our test requires a choice for T ∗. For a given T , T1 = T/2, T ∗

1 = T ∗/2 and the choice
for T ∗ requires that the ratio T ∗/T should go to zero asymptotically. We set T ∗ = T 0.95 which
provides reasonable empirical size at the 1, 5, and 10 percent levels.

Since y0 6= 0, the ADF test requires a constant term and a linear trend component in the test
regression. Accordingly, the asymptotic critical values of the ADF test with y0 6= 0 are -3.96,
-3.41, and -3.12 at the 1, 5, and 10 percent levels, respectively. The asymptotic critical values of
the Elliott et al. (1996) (ERS) are 1.99, 3.26 and 4.48 at the 1, 5, and 10 percent levels. The
asymptotic critical values of the Ng and Perron (2001) (MPP) test are -2.58, -1.98, and -1.62 at
the 1, 5, and 10 percent levels, respectively.

The asymptotic distribution of our test is N(0, 1). The asymptotic and finite sample distribu-
tions of the FGL

J (drift) test are illustrated in Figure 10 where our test statistic has desirable size
in small samples. The size and the power of the tests are calculated for 100 observations at the 1, 5
and 10 percent levels. For size calculations no initial values of y0 are discarded from the simulations.
For power calculations, five times of sample size are discarded as transients. The lag length of the
ADF, ERS and MPP tests are determined by choosing the modified Akaike Information Criteria
(AIC) with a maximum length of 12.17

All simulations for the FGL
J (drift) test are with discrete wavelet transformation (DWT) at

scale-1 (J = 1) and with Haar filter. Table 4 studies the size and power with AR(1) errors for
T = 100. The power of our test is largest when the parameter of the AR(1) error term is negative.
This is because of the fact that there is minimal energy in the smooth component of the DWT

16We also studied DL
T,1and DL

T,4 tests and their performances are similar to that of FG tests. Tables for these tests
are not reported for brevity.

17All calculations are carried out in SPlus using the FinMetrics and Wavelet modules.
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transformation when γ is negative. For γ = −0.50 and ρ = 0.95, the power of our test is 67.3%
whereas ADF, ERS, and MPP have 0.4%, 2.4% and 2% power at the 1% level. At the 5% level,
our test has 70.8% power whereas ADF, ERS, and MPP have 3.3%, 13.4% and 13.6% power.

For γ = 0 and ρ = 0.95, the power of our test is 32% (ADF, ERS and MPP are 0.4%, 3.4%,
3.3%) at the 1% level. At the 5% level, ours is 37.1% and ADF, ERS and MPP are 4.7%, 16%,
17.1% respectively. For positive values of γ, the power performance of our test is not as striking.
This is due to the fact that positive γ adds additional energy to the smooth component of the DWT
transformation which in turn leads to a reduction in power. For γ = 0.50 and ρ = 0.95, the power
of our test is 10.7% and ADF, ERS and MPP are 4.5%, 18.4%, 19.8% at the 5% level.

The reported power performance of our tests are intuitive and the following pattern emerges.
The power of our tests is largest for AR(1) errors with negative coefficients, followed by i.i.d. errors,
then AR(1) errors with positive coefficients, because in terms of energy, AR(1) with negative
coefficients has the least energy relative to that of a random walk, while AR(1) with positive
coefficients has the largest energy relative to that of a random walk. A further advantage of our
test is that it does not involve lag selection which is an issue for our comparison tests. The size
of our test remains stable across the range of AR(1) error parameter whereas the comparison tests
suffer size problems.

Table 5 studies the size and power with MA(1) errors for T = 100. The empirical size of our
test is reasonable across different values of the MA(1) parameter. When θ = 0.50, the size of our
test is 1.3%, 4.2% and 7.4% at the 1, 5, and 10 percent levels, respectively. The ERS and MPP
tests severely underreject for θ = 0.50. For θ = 0, our test has good empirical size with 1.2%, 4.4%
and 8.2% at the 1, 5, and 10 percent levels. ERS and MPP underreject at the 10 percent level
while overrejecting at the 1 percent level. For θ = −0.50, our test underrejects with empirical size
of 0.4%, 2.4% and 5.8% at the 1, 5, and 10 percent levels. ERS and MPP tests grossly overreject
for θ = 0.5. For instance, the size of ERS are 13.6%, 17.4%, and 0.19.6% at the 1, 5, and 10 percent
levels.

When θ = 0.50 and ρ = 0.95, the power of our test is 20% whereas the power of ADF, ERS and
MPP are 3%, 10.6%, 10.8% respectively. This is 85% power improvement over the MPP test. For
θ = 0 and ρ = 0.95, the power of our test is 36.9% whereas the power of ADF, ERS and MPP are
2.9%, 13%, 15.4% respectively. This is 140% power improvement over the MPP test. For θ = −0.50
and ρ = 0.95, the power of our test is 81.4% whereas the power of ADF, ERS and MPP remain at
5.3%, 14.5% and 15.2%.

Similar to that of the AR(1) process, the following pattern emerges for MA(1) errors. The
power of our tests is largest for MA(1) errors with negative coefficients, followed by i.i.d. errors,
then MA(1) errors with positive coefficients, because in terms of energy, MA(1) with negative
coefficients has the least energy relative to that of a random walk, while MA(1) with positive
coefficients has the largest energy relative to that of a random walk. For most ranges of θ, our test
provides reasonable size and substantially higher power relative to the ERS and MPP tests.
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6.3 Tests against trend stationarity

To deal with trend stationary alternatives, components representation of a time series is often used
and detrending performed, see Schmidt and Phillips (1992), Phillips and Xiao (1998), and Stock
(1999). Phillips and Xiao (1998) also have a detailed discussion on efficient detrending for general
trends. For ease of exposition, we restrict ourselves to non-zero mean and linear trend cases only.
The process {yt} is of the form:

yt = µ + αt + ys
t , (39)

where {ys
t } is generated by model (19). Under H0 : ρ = 1, {ys

t } is a unit root process while under
H0 : |ρ| < 1, {ys

t } is a zero mean stationary process. If α = 0, we consider the demeaned series
{yt − y} , where y = T−1

∑T
t=1 yt is the sample mean of {yt}.

The asymptotic critical values of our test, D̂LM
T,1 , are -40.38, -27.38 and -21.75 at the 1, 5, and

10 percent levels, respectively. These critical values are calculated from one million replications.
The asymptotic and finite sample distributions of the D̂LM

T,1 test are illustrated in Figure 11 where
our test statistic has desirable size in small samples. Table 6 studies the size and power of the
demeaned series across sample sizes of 100, 200 and 1,000 observations with i.i.d. errors. All four
tests have empirical sizes close to their nominal counterparts. Ours, D̂LM

T,1 , has comparable power
for T = 100 and provides consistently more power for T = 200 and T = 1000.

If α 6= 0, we work with the detrended series
{
ỹt − ỹ

}
, where ỹt =

∑t
j=1

(
∆yj − ∆y

)
and ỹ is the

sample mean of {ỹt}, in which ∆yt = yt−yt−1 and ∆y is the sample mean of {∆yt} . The asymptotic
critical values of our test, D̂Lt

T,1, are -50.77, -36.54 and -30.23 at the 1, 5, and 10 percent levels,
respectively. These critical values are calculated from one million replications. The asymptotic and
finite sample distributions of the D̂Lt

T,1 test are illustrated in Figure 12 where our test statistic has
desirable size in small samples. Table 7 studies the size and power of the detrended series across
sample sizes of 100, 200 and 1,000 observations with i.i.d. errors. All four tests have empirical sizes
close to their nominal counterparts. ERS and MPP does slightly better than ours for T = 100 and
T = 200. Ours has slightly more power for T = 1000. The advantage of ours is that it is free of lag
selection issues which other tests require.

An extension to GARCH(1,1) errors is carried out in Table 9. Ours tests provide higher power
against ERS and MPP tests and have reasonable empirical size. For a sample size of T = 1000 and
ρ = 0.98, D̂LM

T,1 has a power of 93.4 percent whereas ERS and MPP tests remain at 77.4 and 77.9
percent levels. For D̂Lt

T,1 and ρ = 0.98, the power is 72.6 and the powers of ERS and MPP tests are
70.7 and 68.5 percent. In addition to these power improvements, we wish to reiterate the fact that
our tests are free of lag selection issues which other tests require.
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7 Applications

We apply and compare our tests with the Elliott et al. (1996) (ERS) and Ng and Perron (2001)
(MPP) tests. We use data at 30-minute, daily and monthly frequency from FX, interest rate,
equity markets and inflation rate. For all series, we use the natural logarithm of the levels for all
tests. The test regression contains a drift and trend component for index and individual equity
series and only a drift term for the FX and interest rate series. The lag lengths of the ERS and
MPP test regressions are determined by minimizing the modified Akaike Information Criteria with
a maximum length of 12.

In the 80 years of daily DJIA series, spanning from 1928 to 2007, all three tests fail to reject
the null of unit root with D̂Lt

T,1 providing the smallest p-value of 55%. ERS and MPP p-values
are 89% and 90%. As a major individual stock, we studied daily Microsoft shares adjusted for
dividends and splits from 1986 until 2007, a total of 5,305 observations. The p-values are 90, 98
and 99 percent for the D̂Lt

T,1, ERS and MPP tests. The Canadian inflation, from 1995 to 2007, a
total of 146 observations, lead to p-values of 55, 62 and 57 percent for the D̂Lt

T,1, ERS and MPP
tests.

We also study high-frequency FX series. The data is one year of 30-min series for 1996, a total
of 17,568 observations for the USD-JPY rate.18 With high-frequency series, the p-values are 43%,
80% and 90%, for D̂LM

T,1 , ERS and MPP, respectively. The short-term U.S. Treasury Bills, from
1897 to 1996, a total of 27,567 observations lead to p-values of 1e-008, 0.003 and 0.003 for the D̂LM

T,1 ,
ERS and MPP tests, respectively. The null hypothesis of unit root is rejected at the 1 percent level
for all three tests. The strongest rejection lies with the D̂LM

T,1 test.

8 Testing for Cointegration

The unit root tests developed in the previous sections can be extended to residual-based tests for
cointegration in the same way that other unit root tests have been extended, see e.g., Phillips and
Ouliaris (1990) and Stock (1999). In this section, we provide such an extension for the no-drift case
using unit scale DWT. Extensions for other cases are straightforward.

Our notation and formulation here are similar to those in Phillips and Ouliaris (1990). Let {zt}
be an (m+ 1)-dimensional multivariate time series generated by an integrated process of the form:

zt = zt−1 + ξt,

where {ξt} is a linear process satisfying:

18This is the HFDF-96 data provided by the Olsen Group (www.olsen.ch). More details regarding the properties
of high-frequency FX series can be found in Dacorogna et al. (2001).
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Assumption 2:

(a) {ξt} is a linear process defined as ξt = Ψ(L)εt =
∑∞

j=0 Ψjεt−j , Ψ(1) 6= 0, and Ψ(L) is one-
summable;

(b) {εt} is i.i.d. with E(εt) = 0, V ar(εt) = Σ > 0, and finite fourth cumulants, and εs = 0 for
s ≤ 0.

Let Ω denote the long run variance-covariance matrix of {ξt}. Under Assumption 2, it is known
that T−1/2

∑[Tr]
t=1 ξt =⇒ B(r), where B(r) is (m + 1)-vector Brownian motion with covariance

matrix Ω. We now partition zt = (y1t, y
′
2t)

′ into the scalar variable y1t and the m-dimensional
vector y2t. Consider the linear cointegrating regressions:

y1t = β̂′y2t + ût,

where β̂ is the OLS estimator of β in the regression of y1t on y2t. We now extend our tests for
unit root based on unit scale DWT developed in Subsection 3.2 to the corresponding tests for
no-cointegration. In particular, we use:

ĈD
L

T,1 = −
∑T/2−1

t=L1
Ŵ 2

t,1∑T
t=1 û

2
t

,

where
{
Ŵt,1

}
is the unit scale wavelet coefficients of {ût} . To state the asymptotic distribution of

ĈD
L

T,1 under the null hypothesis of no-cointegration, we need to introduce some notation. Partition
Ω conformably with that of zt so that

Ω =
[
ω11 ω′

21

ω21 Ω22

]
.

Let ω11.2 = ω11 − ω′
21Ω

−1
22 ω21. Further let Wm+1(r) = (W1(r),W2(r)′)′ be an (M + 1)-dimensional

standard Brownian motion. Phillips and Ouliaris (1990) showed that under the null of no-cointegration,
T−2

∑T
t=1 û

2
t =⇒ ω11.2

∫ 1
0 Q

2(r)dr, where

Q(r) = W1(r)−
(∫ 1

0
W1(r)W ′

2(r)dr
)(∫ 1

0
W2(r)W ′

2(r)dr
)−1

W2(r).

Let

A =
∫ 1

0
B(r)B(r)′dr =

[
a11 a′21

a21 A22

]
.
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Theorem 8.1 Under the null hypothesis of no-cointegration,

T
(
ĈD

L

T,1

)
=⇒ −

η′V ar(W z
t,1)η

ω11.2

∫ 1
0 Q

2(r)dr
,

where η′ = (1,−a′21A
−1
22 ) and

{
W z

t,1

}
is the unit scale wavelet coefficient of {zt} .

Both η and ω11.2 depend on the long run covariance matrix Ω. We now discuss its estimation.
Let ξ̂t denote the OLS residual in the regression: zt = Π̂zt−1 + ξ̂t. Then similar to the estimation
of the long run variance ω2, we can use a nonparametric kernel estimator with the Bartlett kernel
to estimate Ω.

9 Conclusions

Our unit root tests provide a novel approach in disbalancing the energy in the data by constructing
test statistics from its lower frequency dynamics. We contribute to the unit root literature on
three different fronts. First, we propose a unified spectral approach to unit root testing; second,
we provide a spectral interpretation of existing Von Neumann variance ratio tests, and finally, we
propose higher order wavelet filters to capture low-frequency stochastic trends parsimoniously and
gain power against near unit root alternatives. In our tests, the intuitive construction and simplicity
are worth emphasizing. The simulation studies demonstrate the superior power of our tests with
reasonable empirical sizes. A generalization of our unit root tests to the maximum overlap DWT
(MODWT) and to residual based tests for cointegration are also provided.
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Appendix: Technical Proofs

Proof of (26): Let T1 = T
2 . By Proposition 17.2 in Hamilton (1994), we have

xt = x0 +
t∑

j=1

vt = x0 +
2t−1∑

j=0

uj

= x0 +



u0 + ψ(1)

2t−1∑

j=1

εj + η2t−1 − η0



 .

Define the partial sum process associated with {vt} as

XT1(r) =
1
T1

[T1r]∑

t=1

vt, 0 ≤ r ≤ 1.

Then it follows that

XT1(r)
L=

1
T1
ψ(1)

2[T1r]−1∑

j=1

εj = 2ψ(1)
1
T

[Tr]−1∑

j=1

εj .

By the functional CLT, we obtain
√
TXT1(·)

L→ 2ψ(1)σW (·),

where W (·) is the standard Brownian motion. Observing that
∑T1

t=1 x
2
t = T 2

1
2

1∫
0

{
TX2

T1
(r)
}
dr, we

obtain by the CMT,

1
T 2

1

T1∑

t=1

x2
t → 1

2
λ2

v

1∫

0

W 2(r)dr,

where λv = 2ψ(1)σ. As a result, we get

(
T

2

)−2

AT
L→ 1

2
λ2

v

∫ 1

0
[W (r)]2dr.

We now look at BT . Recall that BT =
∑T/2

t=1 u2ty2t−1. Simple algebra shows that BT =
1
2

∑T−1
s=1 (T − s − 1)γs = O(T ) and V ar(T−1BT ) = o(1), where γj = σ2

∑∞
s=0 ψsψs+j , for j =

0, 1, 2, . . .. Hence BT = Op(T ). The order of CT follows from the LLN.

33



Proof of Theorem 3.3(i): Since {Wt,1} is stationary,
∑T/2−1

t=L1
W 2

t,1 = Op(T ). Now consider

the order of
∑T/2−1

t=L1
V 2

t,1. Suppose ρ = 1. Noting that

Vt,1 = Y2t+2−L

L−1∑

l=0

gl +
L−2∑

l=0

gl





L−2−l∑

j=0

u2t+1−j−l





=
√

2Y2t+2−L +
L−2∑

l=0

gl





L−2−l∑

j=0

u2t+1−j−l



 ,

we obtain

1
T 2

T/2−1∑

t=L1

V 2
t,1 =

1
T 2

T/2−1∑

t=L1


√2Y2t+2−L +

L−2∑

l=0

gl





L−2−l∑

j=0

u2t+1−j−l








2

=
2
T 2

T/2−1∑

t=L1

Y 2
2t+2−L +

1
T 2

T/2−1∑

t=L1




L−2∑

l=0

gl





L−2−l∑

j=0

u2t+1−j−l








2

+
2
√

2
T 2

T/2−1∑

t=L1

Y2t+2−L




L−2∑

l=0

gl





L−2−l∑

j=0

u2t+1−j−l








=
2
T 2

T/2−1∑

t=L1

Y 2
2t+2−L + op(1)

= Op(1)

Hence when ρ = 1, we obtain

ŜL
T,1 =

1

1 +
∑T/2−1

t=L1
W 2

t,1∑T/2−1
t=L1

V 2
t,1

=
1

1 + Op(T )
Op(T 2)

= 1 + op(1).

If |ρ| < 1, then both {Wt,1} and {Vt,1} are stationary so that

ŜL
T,1 =

EV 2
t,1

EV 2
t,1 +EW 2

t,1

+ op(1).
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T=100
ρ 1% 5% 10% 1% 5% 10% 1% 5% 10%

FGL
J (Haar) ADF PP

1.00 0.007 0.040 0.088 0.010 0.048 0.098 0.011 0.057 0.106
0.95 0.036 0.212 0.389 0.026 0.124 0.233 0.033 0.143 0.253
0.90 0.186 0.625 0.834 0.094 0.331 0.531 0.105 0.358 0.559
0.85 0.484 0.904 0.979 0.256 0.644 0.824 0.280 0.675 0.841
0.80 0.776 0.986 0.998 0.518 0.873 0.965 0.558 0.888 0.966

T=500
ρ 1% 5% 10% 1% 5% 10% 1% 5% 10%

FGL
J (Haar) ADF PP

1.00 0.010 0.047 0.096 0.011 0.048 0.097 0.012 0.051 0.100
0.99 0.048 0.219 0.405 0.031 0.119 0.228 0.035 0.128 0.242
0.98 0.231 0.657 0.867 0.090 0.324 0.511 0.100 0.339 0.525
0.97 0.569 0.938 0.994 0.236 0.607 0.805 0.256 0.621 0.809

T=1,000
ρ 1% 5% 10% 1% 5% 10% 1% 5% 10%

FGL
J (Haar) ADF PP

1.00 0.006 0.048 0.086 0.005 0.044 0.070 0.007 0.043 0.086
0.99 0.253 0.684 0.882 0.094 0.324 0.509 0.101 0.337 0.521
0.98 0.879 0.997 1 0.488 0.859 0.958 0.507 0.858 0.956

Table 1: Size and Power of the FGL
J (J=1) - No Drift

The test statistic and its variance are calculated with discrete wavelet transformation. The data
generating process is yt = yt−1 + ut, ut ∼ iidN(0, σ2) where y0 ∼ N(0, 1) and σ2 = |y0|. Under
the alternative, yt = ρyt−1 + ut, ut ∼ iidN(0, 1) where y0 ∼ N(0, 1/(1− ρ2)). The asymptotic
critical values are -29.04, -17.75 and -13.09 at the 1, 5, and 10 percent levels, respectively. These
critical values are calculated from one million replications. The asymptotic critical values of the
ADF/PP test with y0 6= 0 are -3.43, -2.86, and -2.57 at the 1, 5, and 10 percent levels, respectively.
In the calculation of the ADF/PP tests, the lag length is set to one. All simulations are with 5,000
replications. Under the alternative, the five times of the sample size are discarded as transients.
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T=100
ρ 1% 5% 10% 1% 5% 10% 1% 5% 10%

FGL
J (Haar) FGL

J (LA(10)) FGL
J (LA(20))

1.00 0.007 0.040 0.088 0.007 0.044 0.093 0.012 0.054 0.109
0.95 0.036 0.212 0.389 0.045 0.221 0.400 0.055 0.244 0.415
0.90 0.186 0.625 0.834 0.198 0.626 0.829 0.220 0.627 0.860
0.85 0.484 0.904 0.979 0.486 0.904 0.979 0.492 0.905 0.980
0.80 0.776 0.986 0.998 0.774 0.985 0.998 0.776 0.985 0.998

T=500
ρ 1% 5% 10% 1% 5% 10% 1% 5% 10%

FGL
J (Haar) FGL

J (LA(10)) FGL
J (LA(20))

1.00 0.010 0.047 0.096 0.009 0.047 0.095 0.009 0.047 0.095
0.99 0.048 0.219 0.405 0.049 0.221 0.406 0.052 0.224 0.407
0.98 0.231 0.657 0.867 0.234 0.655 0.866 0.236 0.657 0.866
0.97 0.569 0.938 0.994 0.570 0.934 0.994 0.571 0.936 0.994

T=1,000
ρ 1% 5% 10% 1% 5% 10% 1% 5% 10%

FGL
J (Haar) FGL

J (LA(10)) FGL
J (LA(20))

1.00 0.006 0.048 0.086 0.007 0.047 0.093 0.007 0.047 0.093
0.99 0.253 0.684 0.882 0.256 0.683 0.882 0.259 0.683 0.884
0.98 0.879 0.997 1 0.879 0.997 1 0.879 0.997 1

Table 2: Size and Power of the FGL
J (J=1) - No Drift

The test statistic and its variance are calculated with discrete wavelet transformation. The data
generating process is yt = yt−1 + ut, ut ∼ iidN(0, σ2) where y0 ∼ N(0, 1) and σ2 = |y0|. Under
the alternative, yt = ρyt−1 + ut, ut ∼ iidN(0, 1) where y0 ∼ N(0, 1/(1− ρ2)). The asymptotic
critical values are -29.04, -17.75 and -13.09 at the 1, 5, and 10 percent levels, respectively. These
critical values are calculated from one million replications. The asymptotic critical values of the
ADF/PP test with y0 6= 0 are -3.43, -2.86, and -2.57 at the 1, 5, and 10 percent levels, respectively.
In the calculation of the ADF/PP tests, the lag length is set to one. All simulations are with 5,000
replications. Under the alternative, the five times of the sample size are discarded as transients.

36



T=100
ρ 1% 5% 10% 1% 5% 10% 1% 5% 10%

FGL
J (Haar) ADF PP

1.00 0.010 0.047 0.098 0.010 0.048 0.098 0.011 0.057 0.106
0.95 0.036 0.217 0.391 0.026 0.124 0.233 0.033 0.143 0.253
0.90 0.187 0.629 0.834 0.094 0.331 0.531 0.105 0.358 0.559
0.85 0.489 0.906 0.979 0.256 0.644 0.824 0.280 0.675 0.841
0.80 0.776 0.988 0.999 0.518 0.873 0.965 0.558 0.888 0.966

T=500
ρ 1% 5% 10% 1% 5% 10% 1% 5% 10%

FGL
J (Haar) ADF PP

1.00 0.010 0.053 0.106 0.011 0.048 0.097 0.012 0.051 0.100
0.99 0.048 0.221 0.406 0.031 0.119 0.228 0.035 0.128 0.242
0.98 0.234 0.657 0.868 0.090 0.324 0.511 0.100 0.339 0.525
0.97 0.571 0.939 0.994 0.236 0.607 0.805 0.256 0.621 0.809

T=1,000
ρ 1% 5% 10% 1% 5% 10% 1% 5% 10%

FGL
J (Haar) ADF PP

1.00 0.009 0.053 0.107 0.005 0.044 0.070 0.007 0.043 0.086
0.99 0.258 0.685 0.884 0.094 0.324 0.509 0.101 0.337 0.521
0.98 0.880 0.997 1 0.488 0.859 0.958 0.507 0.858 0.956

Table 3: Size and Power of the FGL
J - (J=4) No Drift

The test statistic and its variance are calculated with discrete wavelet transformation. The data
generating process is yt = yt−1 + ut, ut ∼ iidN(0, σ2) where y0 ∼ N(0, 1) and σ2 = |y0|. Under
the alternative, yt = ρyt−1 + ut, ut ∼ iidN(0, 1) where y0 ∼ N(0, 1/(1− ρ2)). The asymptotic
critical values are -29.04, -17.75 and -13.09 at the 1, 5, and 10 percent levels, respectively. These
critical values are calculated from one million replications. The asymptotic critical values of the
ADF/PP test with y0 6= 0 are -3.43, -2.86, and -2.57 at the 1, 5, and 10 percent levels, respectively.
In the calculation of the ADF/PP tests, the lag length is set to one. All simulations are with 5,000
replications. Under the alternative, the five times of the sample size are discarded as transients.
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T=100
ρ 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

FGL
J (drift) ADF ERS MPP

γ = −0.50
1.00 0.011 0.046 0.093 0.012 0.044 0.093 0.075 0.095 0.112 0.089 0.109 0.130
0.95 0.673 0.708 0.731 0.004 0.033 0.100 0.024 0.134 0.278 0.020 0.136 0.328
0.90 0.823 0.848 0.862 0.013 0.078 0.168 0.076 0.297 0.480 0.059 0.313 0.546

γ = 0
1.00 0.011 0.044 0.087 0.005 0.033 0.068 0.049 0.071 0.081 0.067 0.079 0.096
0.95 0.320 0.371 0.403 0.004 0.047 0.110 0.034 0.160 0.312 0.033 0.171 0.359
0.90 0.437 0.488 0.516 0.017 0.111 0.210 0.105 0.361 0.555 0.097 0.350 0.631

γ = 0.50
1.00 0.034 0.071 0.117 0.008 0.041 0.083 0.018 0.027 0.032 0.022 0.032 0.037
0.95 0.079 0.107 0.131 0.004 0.045 0.099 0.044 0.184 0.320 0.045 0.198 0.373
0.90 0.091 0.125 0.152 0.015 0.078 0.152 0.102 0.360 0.529 0.103 0.390 0.591

Table 4: Size and Power of the FGL
J - With Drift - AR(1) Errors

The test statistic and its variance are calculated with discrete wavelet transformation where J=1 and with Haar filter.
The data generating process is yt = α + yt−1 + ut, ut = γut−1 + εt, εt ∼ iidN(0, σ2) where y0 ∼ N(0, 1). Under the
alternative, yt = α+ ρyt−1 + ut, ut = γut−1 + εt, εt ∼ iidN(0, σ2). For both models, σ2 = 1 and α = 1. The asymptotic
null distribution of FGL

J (drift) is standard normal. The asymptotic critical values of the ADF test with y0 6= 0 are -3.96,
-3.41, and -3.12 at the 1, 5, and 10 percent levels, respectively. The asymptotic critical values of the ERS test are 1.99,
3.26, and 4.48 at the 1, 5, and 10 percent levels, respectively. The asymptotic critical values of the MPP test are -2.58,
-1.98, and -1.62 at the 1, 5, and 10 percent levels, respectively. The lag length of the test regressions is determined by
minimizing the modified AIC with the maximum lag length of 12. All simulations are with 5,000 replications. Under the
alternative, the five times of the sample size are discarded as transients. All calculations are with T ∗ = T 0.95.
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T=100
ρ 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

FGL
J (drift) ADF ERS MPP

θ = 0.50
1.00 0.013 0.042 0.074 0.004 0.030 0.064 0.013 0.015 0.017 0.015 0.016 0.018
0.95 0.154 0.200 0.230 0.003 0.030 0.076 0.024 0.106 0.244 0.016 0.108 0.302
0.90 0.202 0.245 0.279 0.012 0.049 0.104 0.090 0.333 0.548 0.094 0.333 0.548

θ = 0
1.00 0.012 0.044 0.082 0.006 0.033 0.067 0.026 0.035 0.045 0.030 0.045 0.057
0.95 0.319 0.369 0.401 0.003 0.029 0.073 0.017 0.130 0.291 0.02 0.154 0.355
0.90 0.438 0.489 0.521 0.016 0.100 0.209 0.095 0.317 0.555 0.080 0.354 0.584

θ = −0.50
1.00 0.004 0.024 0.058 0.012 0.056 0.094 0.098 0.144 0.176 0.136 0.174 0.196
0.95 0.793 0.814 0.831 0.012 0.053 0.111 0.034 0.145 0.284 0.033 0.152 0.330
0.90 0.927 0.937 0.944 0.028 0.113 0.208 0.088 0.265 0.429 0.085 0.278 0.468

Table 5: Size and Power of the FGL
J - With Drift - MA(1) Errors

The test statistic and its variance are calculated with discrete wavelet transformation where J=1 and with Haar filter.
The data generating process is yt = α + yt−1 + ut, ut = εt + θεt−1, εt ∼ iidN(0, σ2) where y0 ∼ N(0, 1). Under the
alternative, yt = α + ρyt−1 + ut, ut = εt + θεt−1, εt ∼ iidN(0, σ2). For both models, σ2 = 1 and α = 1. The asymptotic
null distribution of FGL

J (drift) is standard normal. The asymptotic critical values of the ADF test with y0 6= 0 are -3.96,
-3.41, and -3.12 at the 1, 5, and 10 percent levels, respectively. The asymptotic critical values of the ERS test are 1.99,
3.26, and 4.48 at the 1, 5, and 10 percent levels, respectively. The asymptotic critical values of the MPP test are -2.58,
-1.98, and -1.62 at the 1, 5, and 10 percent levels, respectively. The lag length of the test regressions is determined by
minimizing the modified AIC with the maximum lag length of 12. All simulations are with 5,000 replications. Under the
alternative, the five times of the sample size are discarded as transients. All calculations are with T ∗ = T 0.95.
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ρ 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
D̂Ld

T,1 ADF ERS MPP

T = 100
1.00 0.013 0.056 0.104 0.008 0.042 0.094 0.011 0.048 0.104 0.010 0.054 0.126
0.95 0.047 0.199 0.357 0.019 0.077 0.145 0.035 0.199 0.347 0.031 0.212 0.413
0.90 0.190 0.527 0.707 0.039 0.199 0.336 0.155 0.464 0.663 0.164 0.508 0.745

T = 200
1.00 0.012 0.053 0.102 0.011 0.054 0.104 0.016 0.059 0.103 0.015 0.057 0.111
0.95 0.232 0.554 0.729 0.051 0.203 0.351 0.155 0.441 0.655 0.152 0.473 0.713
0.90 0.799 0.974 0.995 0.286 0.657 0.828 0.550 0.806 0.912 0.577 0.846 0.938

T = 1000
1.00 0.010 0.052 0.101 0.010 0.052 0.103 0.014 0.057 0.102 0.014 0.055 0.110
0.99 0.277 0.615 0.773 0.060 0.216 0.356 0.156 0.438 0.623 0.153 0.440 0.641
0.98 0.805 0.972 0.993 0.253 0.592 0.796 0.497 0.774 0.862 0.495 0.776 0.871

Table 6: Size and Power of the D̂LM
T,1 - Demeaned Series

The wavelet test statistic is calculated with a unit scale (J = 1) discrete wavelet transformation and with the Haar filter.
The data generating process is yt = µ + ys

t , where ys
t = ρys

t−1 + ut, ut ∼ iidN(0, σ2) and y0 ∼ N(0, σ2). Under the null
ρ = 1 and under the alternative ρ < 1. The asymptotic critical values of the D̂LM

T,1 test are -40.38, -27.38, and -21.75 at
the 1, 5, and 10 percent levels, respectively. The asymptotic critical values of the ADF test with y0 6= 0 are -3.96, -3.41,
and -3.12 at the 1, 5, and 10 percent levels, respectively. The asymptotic critical values of the ERS test are 1.99, 3.26, and
4.48 at the 1, 5, and 10 percent levels, respectively. The asymptotic critical values of the MPP test are -2.58, -1.98, and
-1.62 at the 1, 5, and 10 percent levels, respectively. The lag length of the test regressions is determined by minimizing
the modified AIC with the maximum lag length of 12. All simulations are with 1,000 replications.
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ρ 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
D̂Ld

T,1 ADF ERS MPP

T = 100
1.00 0.004 0.035 0.079 0.010 0.048 0.096 0.003 0.032 0.085 0.003 0.032 0.082
0.95 0.016 0.059 0.148 0.014 0.080 0.154 0.060 0.066 0.154 0.016 0.058 0.151
0.90 0.023 0.171 0.346 0.055 0.190 0.322 0.029 0.192 0.376 0.031 0.184 0.372

T = 200
1.00 0.011 0.046 0.089 0.013 0.058 0.104 0.008 0.041 0.083 0.008 0.042 0.082
0.95 0.044 0.205 0.366 0.044 0.184 0.315 0.047 0.206 0.374 0.052 0.196 0.363
0.90 0.258 0.667 0.832 0.257 0.635 0.811 0.267 0.663 0.830 0.283 0.663 0.833

T = 1000
1.00 0.013 0.054 0.103 0.008 0.052 0.099 0.010 0.056 0.099 0.011 0.054 0.094
0.99 0.059 0.221 0.363 0.048 0.213 0.328 0.054 0.207 0.369 0.058 0.196 0.339
0.98 0.327 0.690 0.834 0.266 0.637 0.795 0.297 0.663 0.830 0.304 0.650 0.821

Table 7: Size and Power of the D̂Ld
T,1 - GLS Detrended Series

The wavelet test statistic is calculated with a unit scale (J = 1) discrete wavelet transformation and with the Haar filter.
The data generating process is yt = µ + αt + ys

t , where ys
t = ρys

t−1 + ut, ut ∼ iidN(0, σ2) and y0 ∼ N(0, σ2). Under the
null ρ = 1 and under the alternative ρ < 1. The asymptotic critical values of the D̂Lt

T,1 test are -50.77, -36.54, and -30.23
at the 1, 5, and 10 percent levels, respectively. The asymptotic critical values of the ADF test with y0 6= 0 are -3.96,
-3.41, and -3.12 at the 1, 5, and 10 percent levels, respectively. The asymptotic critical values of the ERS test are 3.96,
5.62, and 6.89 at the 1, 5, and 10 percent levels, respectively. The asymptotic critical values of the MPP test are -3.42,
-2.91, and -2.62 at the 1, 5, and 10 percent levels, respectively. The lag length of the test regressions is determined by
minimizing the modified AIC with the maximum lag length of 12. All simulations are with 1,000 replications.
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ρ 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
D̂Ld

T,1 ADF ERS MPP

D̂LM
T,1 - Demeaned Series

1.00 0.012 0.054 0.112 0.025 0.076 0.121 0.014 0.062 0.115 0.012 0.058 0.124
0.99 0.183 0.501 0.692 0.052 0.184 0.325 0.176 0.448 0.605 0.170 0.447 0.634
0.98 0.664 0.934 0.986 0.257 0.591 0.775 0.540 0.774 0.856 0.547 0.779 0.866

D̂Ld
T,1 - GLS Detrended Series

1.00 0.016 0.058 0.105 0.019 0.061 0.114 0.016 0.061 0.111 0.015 0.059 0.103
0.99 0.095 0.294 0.427 0.065 0.208 0.356 0.087 0.250 0.393 0.090 0.241 0.377
0.98 0.372 0.726 0.855 0.235 0.597 0.774 0.353 0.707 0.840 0.361 0.685 0.823

Table 8: Size and Power of the D̂LM
T,1 and D̂Ld

T,1 - GARCH(1,1) Errors
The wavelet test statistic is calculated with a unit scale (J = 1) discrete wavelet transformation and with the Haar
filter. The data generating process is yt = µ + αt + ys

t , where ys
t = ρys

t−1 + εt, εt = utσt where ut ∼ N(0, 1), σ2
t =

1+0.25ε2t−1 +0.65σ2
t−1 and y0 ∼ N(0, σ2). The lag length of the test regressions is determined by minimizing the modified

AIC with the maximum lag length of 12. All simulations are with 1,000 replications.
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Wavelet ERS MPP Observations Dates Frequency

DJIA (D̂Ld
T,1) 0.55 0.89 0.90 19,702 1928/10/01 - 2007/3/21 Daily

Microsoft (D̂Ld
T,1) 0.90 0.98 0.99 5,305 1986/03/13 - 2007/3/21 Daily

Inflation (Canada) (D̂Ld
T,1) 0.55 0.62 0.57 146 1995/01 - 2007/2 Monthly

USD-JPY (D̂LM
T,1 ) 0.43 0.80 0.90 17,568 1996/01/01 - 1996/31/12 30-Minutes

T-BILL (D̂LM
T,1 ) 1e-008 0.003 0.003 27,567 1897/01/02 - 1996/12/31 Daily

Table 9: p-values of Unit Root Tests with Equity, Inflation, FX and Interest Rates
The lag length of the ERS and MPP test regressions is determined by minimizing the modified AIC with the maximum
lag length of 12.
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Figure 1: Squared Gain Functions for Ideal Filters and Their Wavelet Approximations
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Squared gain functions for ideal filters (solid line) and their wavelet approximations (dotted line). The shaded regions represent

leakage, meaning frequencies outside the nominal pass-band persist in the filtered output. (a) An ideal high-pass filter (solid

line) over the frequency interval f ∈ [1/4,1/2] and its approximation via the D(4) wavelet filter (dotted line). (b) An ideal

low-pass filter over f ∈ [0,1/4] and its approximation via the D(4) scaling filter. (c) An ideal band-pass filter over f ∈ [1/8,1/4]

and its approximation via the second scale D(4) wavelet filter.
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Figure 2: Haar Wavelet Filter Coefficients
Haar wavelet filter coefficients for the first four scales. The nonzero coefficients indicated by vertical lines attached to the solid

circles—from top to bottom—are given by h1,l = (1,−1)/
√

2, h2,l = (1,1,−1,−1)/2, h3,l = (1/
√

8 · 14 ,−1/
√

8 · 14), and

h4,l = (1/4 · 18 ,−1/4 · 18), where 1N is a length N vector of ones.
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Figure 3: The Haar Wavelet Filter in Frequency Domain
Frequency-domain representation of the Haar wavelet filter. Each plot shows the squared gain function corresponding to the

wavelet coefficient vectors in Figure 2. An ideal band-pass filter would only exhibit positive values on the frequencies between the

dotted lines. Frequencies with positive weight H(f) > 0 outside of the dotted lines (shaded regions) indicate poor approximation

of the Haar wavelet filter to an ideal band-pass filter. This is also known as leakage.
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Figure 4: LA(8) Wavelet Filter Coefficients
LA(8) wavelet filter coefficients for the first four scales h1,l, . . . , h4,l. Starting with eight nonzero coefficients at the first scale,

the LA(8) wavelet filter is smoother than the Haar and is nearly symmetric with a positive peak and a negative dip on either

side. Unlike the Haar wavelet filter, the LA(8) coefficients do not have a convenient closed-form expression.
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Figure 5: The LA(8) Wavelet Filter in Frequency Domain
Frequency-domain representations of the LA(8) wavelet filter. Each plot shows the squared gain function corresponding to the

wavelet coefficient vectors in Figure 4. Frequencies with positive weight H(f) > 0 outside of the dotted lines (shaded regions)

correspond to the leakage associated with this approximation to an ideal band-pass filter. The filters associated with these

squared gain functions suffer from much less leakage than the Haar wavelet filters.
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Figure 6: Daubechies Wavelet Filters of Lengths L ∈ {2, 4, 8}
Daubechies wavelet filters of lengths L ∈ {2,4,8} for level j = 6. From top to bottom, the first three rows are extremal phase

Daubechies compactly supported wavelets (the Haar wavelet is equivalent to the D(2)), while the last row is a least asymmetric

Daubechies compactly supported wavelet.
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Figure 7: Wavelet Variance Decomposition of a White Noise Process
The energy decomposition of a white noise process through a six level discrete wavelet decomposition (DWT) with 1024

observations. (a) “Data” represents the total energy of the data which is normalized at one. wi, i = 1, . . . ,6 represents the

percentage energy of the wavelet coefficients. v6 is the percentage energy of the scale coefficients. The energies of the wavelet

and scaling coefficients are equal to the sum of the energy of the data. The energy is the highest at the highest frequency

wavelet coefficient (w1) and declines gradually towards the lowest frequency wavelet coefficient (w6). The percentage energy of

the scaling coefficient (v6) is zero. (b) This figure compares the proportional energy of the data to the proportional energy of

all coefficients. The number of coefficients needed is equal to the number of data points to account for the total energy of the

data. The horizontal axis is on natural logarithmic scale. 50
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Figure 8: Wavelet Variance Decomposition of a Unit Root Process
The energy decomposition of a unit root process through a six level discrete wavelet decomposition (DWT) with 1024 observa-

tions. (a) “Data” represents the total energy of the data which is normalized at one. wi, i = 1, . . . , 6 represents the percentage

energy of wavelet coefficients. v6 is the percentage energy of the scaling coefficients. The energies of the wavelet and scaling

coefficients are equal to the sum of the energy of the data. The energy is the highest for the scaling coefficients and close to

zero for wavelet coefficients. The percentage energy of the scaling coefficients (v6) is close to the energy of the data. (b) This

figure compares the proportional energy of the data to the proportional energy of all coefficients. The number of coefficients

needed equals 41 (41/1024 = 4%) of the total number of coefficients to account for the total energy of the data. The horizontal

axis is on natural logarithmic scale. 51
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Figure 9: Limiting and Empirical Distributions of FGL(Haar)
The limiting distribution of − 1∫ 1

0 [W (r)]2dr
for 1 million replications. The empirical distribution of FGL(Haar) is with T =

100 & 500 and 1,000 observations and for 20,000 replications. The simulated data for the null distribution is generated from

yt = yt−1 + ut where ut ∼ i.i.d.N(0,σ2) where y0 ∼ N(0,1).
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Figure 10: Limiting and Empirical Distributions of FGL(drift)(Haar)
The limiting distribution is standard normal. The empirical distribution of FGL(drift)(Haar) is with T = 100 and T = 500 for

10,000 replications. The simulated data for the null distribution is generated from yt = α+yt−1 +ut, α = 5, ut ∼ i.i.d.N(0, σ2)

where y0 ∼ N(0,1).
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Figure 11: Limiting and Empirical Distributions of D̂LM
T,1

The limiting distribution of − 1∫ 1
0 [Wµ(r)]2dr

for 1 million replications. The empirical distribution of D̂LM
T,1 is with T = 100 and

200 observations and for 5,000 replications. The simulated data for the null distribution is generated from yt = µ + ys
t , where

ys
t = ys

t−1 + ut, ut ∼ iidN(0, σ2) and y0 ∼ N(0,1).
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Figure 12: Limiting and Empirical Distributions of D̂Ld
T,1

The limiting distribution of − 1∫ 1
0 [Vµ(r)]2dr

for 1 million replications. The empirical distribution of D̂Ld
T,1 is with T = 100 and

200 observations and for 5,000 replications. The simulated data for the null distribution is generated from yt = µ + αt + ys
t ,

where ys
t = ys

t−1 + ut, ut ∼ iidN(0, σ2) and y0 ∼ N(0,1).
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