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Abstract

This paper characterizes the bandwidth value (h) that is optimal for estimating param-

eters of the form η = E
[
ω/fV |U (V |U)

]
, where fV |U (the conditional density of a scalar

continuous random variable V , given a random vector U) is replaced by its kernel estimator.

The results in this paper are directly applicable to semiparametric estimators proposed in

Lewbel (1998), Lewbel (2000b), Honoré and Lewbel (2002), Khan and Lewbel (2007), and

Lewbel (2006). The optimal bandwidth is derived by minimizing the leading terms of a

second–order mean squared error expansion of the resulting estimator with respect to h.

The expansion also demonstrates that the bandwidth can be chosen on the basis of bias

alone, and that a simple ‘plug-in’ estimator for the optimal bandwidth can be constructed.

Finally, the small sample performance of our proposed estimator of the optimal bandwidth

is assessed by a Monte Carlo experiment. We then use our methodology in an empirical

application of the female labour force participation in Ecuador.
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1 Introduction

An important class of semiparametric estimators, first proposed by Lewbel (1998), involves the

use of kernel–based nonparametric estimates in place of the true conditional density in objects

of the form

η = E

[
ω

fV |U (V |U)

]
, (1.1)

where
{
ω⊤, V,U⊤

}
is a random vector, and fV |U (·) denotes the conditional density function of

a scalar continuous random variable V given the random subvector U. This conditional density

function is assumed to be estimated here by the ratio of kernel estimators for fV U (·) and fU (·),
the joint and marginal densities of

(
V,U⊤

)
and (U) respectively.

For Limited Dependent Variable models, examples of estimators belonging to this class are

Lewbel (1998), Lewbel (2000b), Honoré and Lewbel (2002), Khan and Lewbel (2007), and

Lewbel (2006). Results derived in this paper are directly applicable to these estimators. Specif-

ically, if one has a random sample
{
ω⊤

i , vi,u
⊤
i

}
from the joint distribution of

{
ω⊤, V,U⊤

}
for

i = 1, . . . , N , implementation of any of these estimators requires choosing the numerical value

of a bandwidth parameter, h, for the nonparametric kernel estimator of fV |U (·) in (1.1). This

paper discusses formally how to perform this selection. Given that the asymptotic (first–order)

distribution of this semiparametric estimator, η̃ (h), of (1.1) does not depend on the band-

width1 h, any optimal bandwidth formula must be based on a higher–order approximation to

such distribution. Technically, such approximations become more complex in the presence of

stochastic denominators in a simple ‘plug–in’ semiparametric estimator of (1.1) as explained

above. Therefore, we take an alternative approach. We first show that η̃ (h) is asymptotically

equivalent to a linear combination of functions of U–statistics, which we call its ‘asymptotic

representation’, η̂ (h), and does not have a stochastic denominator. This asymptotic repre-

sentation includes functions of a U–statistic of order one (a simple sample average), and two

data dependent (via the bandwidth parameter h) second–order U–statistics. Finally, we find a

formula for the optimal bandwidth that minimizes (with respect to h) the leading terms of an

asymptotic approximation to

E
[
‖η̂ (h) − η‖2

]
,

where ‖·‖ is the standard Euclidean2 norm.

Related calculations to the ones derived here can be found in the literature of bandwidth se-

lection for average derivative estimation, see e.g. Härdle, Hart, Marron, and Tsybakov (1992),

Härdle and Tsybakov (1993) and Powell and Stoker (1996). Our results are different from

1See Lewbel (1998), Lewbel (2000a) Lewbel (2000b), Honoré and Lewbel (2002), and Khan and Lewbel (2007)

for precise derivations.
2Similarly, we could replace ‖a‖ everywhere in this paper by ‖a‖

W
= a

⊤
Wa, where W is any positive

semidefinite weighting matrix. The results will not change.
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theirs in that the optimal bandwidth for semiparametric kernel estimators of (1.1) can be cho-

sen on the basis of bias alone. In particular, we show that the leading terms in the Mean

Squared Error (MSE) are two biases. One is attributed to the pointwise ‘smoothing’ bias

of the kernel density estimator used, and the other to its variance. Linton (1991) called the

latter ‘degrees–of–freedom’ bias. Similar results were found by Jones and Sheather (1991) for

the kernel–based integrated squared density derivatives estimator of Hall and Marron (1987),

and by Ichimura and Linton (2005) for a kernel–based implementation of Hirano, Imbens, and

Ridder (2003)’s estimators of treatment effects. Linton (1991) discussed a similar result for the

variance estimator in the presence of unknown mean. Furthermore, unlike the standard case in

average derivative estimation3, semiparametric estimation of (1.1) could include discrete ele-

ments (specifically in U) through its nonparametric component without the need of additional

conditions. We explain this extension in greater detail in our discussion below.

As it could be expected, another conclusion from this paper is that the derived asymptoti-

cally optimal bandwidth, hopt, must shrink more rapidly to zero than it would be for optimal

pointwise kernel estimation of fV |U (·), i.e. estimating this function at a point. In this sense,

‘asymptotic undersmoothing’ is necessary for
√

N–consistent estimation of (1.1). This feature is

explained in the unifying theory of Goldstein and Messer (1992), whose main focus was to high-

light differences in the conditions of limiting theory between nonparametric and semiparametric

estimation, but did not address the issue of bandwidth selection for particular applications such

as the one discussed here.

The remainder of the paper is organized as follows: Section 2, presents the notation and

assumptions used throughout the paper. In this section, we analyze the sensitivity of kernel–

based semiparametric estimator of (1.1) to the choice of bandwidth, and its kernel’s order

via a second–order asymptotic expansion of its MSE. We also make explicit the difference

between ‘nonparametric’ and ‘semiparametric’ optimal bandwidths. Section 3 discusses how to

exploit the asymptotic representation of η̃ (h) in order to construct a simple estimator of the

optimal bandwidth. We also prove its consistency. In Section 4.1, a Monte Carlo experiment is

performed to assess the small sample behavior of the proposed ‘plug–in’ estimator of the optimal

bandwidth. We also compare its performance against other reference rules proposed in the

literature for estimation of the nonparametric component fV |U (·). This section also contains

an empirical implementation of the proposed methodology to the semiparametric estimation

of the binary response model of labour market participation of women in Ecuador. Section 5

examines how results in Section 2 can be extended to cases when some components of U are

discrete. Section 6 summarizes and gives concluding remarks. All proofs are presented in the

Appendix.

3Horowitz and Härdle (1996) adapted the average derivative estimator to allow for some discrete components.

This requires additional conditions than in the standard case.
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2 Asymptotic Mean Square Error

Firstly, we introduce some notation and definitions that will aid the latter discussion.

2.1 Framework

We assume that each observation in a data set,
{
ω⊤

i , vi,u
⊤
i

}
, is an independently, identically

distributed draw from the joint distribution of
{
ω⊤, V,U⊤

}
for i = 1, . . . , N , where U is a d−1

vector, V is a scalar, and ω another dim (ω)× 1 vector of random variables or known functions

of observed random variables. The distributions of U and (V,U⊤) are absolutely continuous

with respect to some Lebesgue measures, with Radon–Nikodym densities fU (u) and fV U(v,u)

with bounded supports ΩU and ΩV U respectively.

For a bandwidth sequence h ≡ h (N) → 0 and N → ∞, the nonparametric estimators of

the unknown densities fU (u) and fV U(v,u) used here are the well known Nadaraya–Watson

kernel smoothers:

f̂U (ui;h) ≡ 1

N − 1

N∑

j=1
j 6=i

1

hd−1
K
(

uj − ui

h

)
, and (2.1)

f̂V U (vi,ui;h) ≡ 1

N − 1

N∑

j=1
j 6=i

1

hd
W

(
vj − vi

h

)
K
(

uj − ui

h

)
(2.2)

respectively. Here

K (x1, . . . , xd−1) =

d−1∏

j=1

K (xj) , x = (x1, . . . , xd−1) ∈ ℜd−1,

where K and W are one–dimensional bounded symmetric kernel functions that integrate to

one. We have also used the ‘leave–one–out’ paradigm in the construction of our smoothers

above. A natural estimator4 for fV U (vi|ui) is then given by f̂V |U (vi|ui;h) = f̂V U (vi,ui;h)

/f̂U (ui;h), and its inverse can be estimated by

l̂V U (vi,ui;h) =
f̂U (ui;h)

f̂V U(vi,ui;h)
,

and an estimator of η ≡ E [ω/f (v|u)] is then given by

η̃ (h) = N−1
N∑

i=1

ωil̂V U (vi,ui;h) . (2.3)

4This estimator was first proposed by Rosenblatt (1969), for the case d = 2, and later analyzed by Hyndman,

Bashtannyk, and Grunwald (1996).
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As previously noted, this estimator is technically inconvenient to handle given the presence of

the stochastic denominator in l̂V U (vi,ui;h). Therefore, we also define an asymptotic represen-

tation which will be the basis of our analysis below,

η̂ (h) = N−1
N∑

i=1

ωiL̂V U (vi,ui;h) , (2.4)

where

L̂V U (vi,ui;h) =
fUi

fV Ui
+ 2

f̂Ui

fV Ui
− 2

fUif̂V Ui

f2
V Ui

− f̂V Uif̂Ui

f2
V Ui

+
fUif̂

2
V Ui

f3
V Ui

, (2.5)

and f̂Ui ≡ f̂U (ui;h), f̂V Ui ≡ f̂V U(vi,ui;h).

Now, let us define the following quantities: δ̂1 ≡ N−1
∑N

i=1 fUi/fV Ui, δ̂2 (h) ≡ N−1
∑N

i=1 ωi

(f̂Ui/fV Ui), δ̂3 (h) ≡ N−1
∑N

i=1 ωi(fUif̂V Ui/f
2
V Ui), δ̂4 (h) ≡ N−1

∑N
i=1 ωif̂V Uif̂Ui/f

2
V Ui, and

δ̂5 (h) ≡ N−1
∑N

i=1 ωifUif̂
2
V Ui/f

3
V Ui.

It then follows that

η̂ (h) = δ̂1 + 2δ̂2 (h) − 2δ̂3 (h) − δ̂4 (h) + δ̂5 (h) , (2.6)

That is, η̂ (h) can be written as a linear combination of functions of certain U–statistics. In

particular, δ̂2 (h) and δ̂3 (h) are generic second–order U–statistics:

δ̂2 (h) =

(
N

2

)−1∑

i<j

̟2i + ̟2j

2hd−1
K
(

ui − uj

h

)

≡
(

N

2

)−1∑

i<j

p2 (t2i, t2j ;h) , and

δ̂3 (h) =

(
N

2

)−1∑

i<j

̟3i + ̟3j

2hd
W

(
vi − vj

h

)
K
(

ui − uj

h

)

≡
(

N

2

)−1∑

i<j

p3 (t3i, t3j ;h) ,

where t⊤2i =
(
̟⊤

2i,u
⊤
i

)
, and t⊤3i =

(
̟⊤

3i, vi,u
⊤
i

)
, with ̟2i ≡ ωi/fV Ui, and ̟3i ≡ ωifUi/f

2
V Ui

respectively. By simple inspection, we notice that these U–statistics ‘kernel’ functions p2 (·) and

p3 (·) are symmetric – that is, p2 (t2i, t2j;h) = p2 (t2j , t2i;h) and p3 (t3i, t3j ;h) = p3 (t3j, t3i;h).

Powell, Stock, and Stoker (1989) derived first–order limiting theory for this type of linear func-

tions that involves data–dependent (via the bandwidth parameter h) U–statistics. Similarly, we

5



also define ̟4i ≡ ωi/f
2
V Ui, and ̟5i ≡ ωifUi/f

3
V Ui. It then follows, under conditions explained

below, that

η = lim
h→0

E [η̂ (h)]

= E
[
δ̂1

]
+ 2 × lim

h→0
E
[
δ̂2 (h)

]
− 2 × lim

h→0
E
[
δ̂3 (h)

]
− lim

h→0
E
[
δ̂4 (h)

]
+ lim

h→0
E
[
δ̂5 (h)

]

= η + 2η − 2η − η + η.

Also, notice that by construction

η̃ (h) − η̂ (h) = ϑ̂ (h) ,

where ϑ̂ (h) = N−1
∑N

i=1(ϑ̂1i (h) − ϑ̂2i (h))ωi, with

ϑ̂1i (h) ≡ (f̂V Ui − fV Ui)
2(f̂Ui − fUi)/(f

2
V Uif̂V Ui), and

ϑ̂2i (h) ≡ (f̂V Ui − fV Ui)
3fUi/(f

3
V Uif̂V Ui).

2.2 Sensitivity Analysis

The objective of this paper is to characterize the optimal bandwidth hopt for computing η.

Towards that end, we make the following assumptions:

Assumption A:

(A1) The kernels W : [−1, 1] → ℜ, and K : [−1, 1] → ℜ are bounded, continuously differen-

tiable, symmetric such that
∫

W (c) dc =
∫

K (c) dc = 1. There exists constants kv, k∗
v , ku

and k∗
u > 0, such that W 2 (v) ≥ k∗

v1
(
‖v‖ ≤ k−1

v

)
, K2 (u) ≥ k∗

u1
(
‖u‖ ≤ k−1

u

)
.

(A2) Kernels W (c), and K (c) have order P , that is, there exists a positive integer P ≥ 2

such that
∫

cjW (c) dc =
∫
cjK (c) dc = 0, j = 1, . . . , P − 1,

∫
cP W (c) dc = dW 6= 0 and∫

cP K (c) dc = dK 6= 0.

(A3) The continuous density functions fu (u), fV U(v,u) exist and are bounded away from zero.

The functions π1 (u) = E [̟1|U = u], π2 (u) = E [̟2|U = u], π̃1 (v,u) = E ̟1|V = v,

U = u], π̃2 (v,u) = E [̟2|V = v,U = u], π3 (v,u) = E[̟3|V = v,U = u], π4 (v,u) =

E[̟4|V = v,U = u], π5 (v,u) = E[̟5|V = v,U = u] exist and have bounded continu-

ous partial derivatives up to the order P on their compact supports ΩU ≡
∏d−1

j=1

[
U j, U j

]

and Ωvu ≡
[
V , V

]
× ΩU respectively, for −∞ < V < V < ∞, and −∞ < U j < U j < ∞,

for j = 1, . . . , d − 1.

(A4) supΩV U
‖ω‖ < ∞, and E [‖ω‖ǫ|V = v,U = u] has bounded continuous partial derivatives

up to order P on their compact support, for ǫ = 1, 2, 3, 4
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(A5) hopt ∝ N−1/(P+d).

Assumptions (A1)–(A3) are standard conditions when using kernel smoothers ensuring the

regularity of W , K, fV U, and fU. Assumption (A4) will facilitate the proofs and can be relaxed

at the expense of more complicated mathematics. The last Assumption, (A5), predefines the

optimal rate of hopt, which is derived below. The following Lemma guarantees that the MSE–

expansion of η̂ (h) is equivalent to that of η̃ (h) up to the third power.

Lemma 2.1 (Asymptotic Representation) Under Assumptions (A1)–(A5),

√
Nϑ̂ (h) = op

(
N−(P−d)/(P+d)

)
, as N → ∞.

Proof. See Appendix.

This Lemma guarantees the asymptotic equivalence between η̂ (·) and η̃ (·), which means

that (2.3) may be replaced by (2.4) for purpose of this analysis. We make an additional technical

assumption before we state the main result of this paper:

(A6) The vectors of errors ε1 = ̟1 − π1 (u), ε̃1 = ̟1 − π̃1(v,u), ε2 = ̟2 − π2 (u), ε̃2 =

̟2 − π̃2 (v,u), ε3 = ̟3 − π3 (v,u), ε4 = ̟4 − π4 (v,u), and ε5 = ̟5 − π5 (v,u)

are such that σ2
1 (u) = E

[
ε⊤1 ε1

∣∣U = u
]
, σ̃2

1 (v,u) = E
[
ε̃⊤1 ε̃1

∣∣V = v,U = u
]
, σ2

2 (u) =

E
[
ε⊤2 ε2

∣∣U = u
]
, σ2

3 (v,u) = E
[
ε⊤3 ε3

∣∣V = v,U = u
]
, σ2

4 (v,u) = E[ε⊤4 ε4

∣∣V = v,U =

u], σ2
5 (v,u) = E

[
ε⊤5 ε5

∣∣V = v,U = u
]
, σ12 (u) = E

[
ε⊤1 ε2

∣∣U = u
]
, σ̃13 (v,u) = E[ε̃⊤1

ε3|V = v,U = u], σ̃14 (v,u) = E
[
ε̃⊤1 ε4

∣∣V = v,U = u
]
, σ̃15 (v,u) = E[ ε̃⊤1 ε5

∣∣V =

v,U = u], σ̃23 (v,u) = E
[
ε̃⊤2 ε3

∣∣V = v,U = u
]
, σ̃24 (v,u) = E[ ε̃⊤2 ε4

∣∣V = v,U = u],

σ̃25 (v,u) = E
[
ε̃⊤2 ε5

∣∣V = v,U = u
]
, σ34 (v,u) = E

[
ε⊤3 ε4

∣∣V = v,U = u
]
, σ35 (v,u) =

E
[
ε⊤3 ε5

∣∣V = v,U = u
]
, and σ45 (v,u) = E

[
ε⊤4 ε5

∣∣V = v,U = u
]

are bounded on their

respective compact supports ΩU and ΩV U.

We now formulate the Mean Square Error of η̂ (h) for η, in terms of the dominant components

in an asymptotic expansion.

Theorem 2.2 If Assumptions (A1)–(A3), and (A6), hold, then

E
[
‖η̂ (h) − η‖2

]
= O

(
N−1

)
+
∥∥∥B1h

P + B2N
−1h−d

∥∥∥
2

+ O

(
hP

N
+

1

N2

)
+ o

(
hP

N
+

1

N2h2d
+ h2P

)
, (2.7)
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as N → ∞, where

B1 =

∫
π2 (u)SK (u) fU (u) du−

∫
π3 (v,u) SWK (v,u) fV U (v,u) dvdu, (2.8)

B2 = CWK

∫
π3 (v,u) fV U (v,u) dvdu, (2.9)

and

CWK =

[∫
W 2 (c) dc

] [∫
K2 (c) dc

]d−1

,

SK (u) = dK
1

P !

d−1∑

j=1

∂P fU (u)

∂uP
j

,

SWK (v,u) =
1

P !


dW

∂P fV U (v,u)

∂vP
+ dK

d−1∑

j=1

∂P fV U (v,u)

∂uP
j


 .

Proof. See Appendix.

The first bias, B1, is related to the ‘smoothing’ bias of the kernel smoother used, while the

second bias, B2, comes from its pointwise variance. This ‘degrees–of–freedom’ bias dominates

the O
(
N−2h−d

)
variance term that would otherwise appear in the expansion (see Powell and

Stoker (1996) for such calculation).

2.2.1 Optimization

The result of Theorem 2.2 can be used to perform a sensitivity analysis with respect to band-

wdith choice and order of kernel.

Choice of h

The asymptotically optimal bandwidth is obtained by minimizing (2.7) on the basis of h.

This is achieved when

hopt = C0 × N−1/(P+d), (2.10)

where C0 is a proportionality constant. The choice of bandwidth equates the leading orders of

both biases, B1h
P and B2N

−1h−d. By choosing this bandwidth, we have

E
[
‖η̂ − η‖2

]
= O

(
N−1

)

+
∥∥∥B1C

P
0 + B2C

−d
0

∥∥∥
2
N−2P/(P+d) (2.11)

+ O
(
N−2

)
+ o(N−2P/(P+d)), as N → ∞.
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That is, the decreasing rate of the best bandwidth optimizing second–order terms is of order

N−1/(P+d), which results in an optimal MSE–rate of convergence of N−1. In comparison

with the leading term, the second term in (2.11) is not small in general, since their ratio is

O(N−(P−d)/(P+d)). This means that very large values of N are needed before its influence

eventually disappears.

Interestingly, unlike other semiparametric estimators (see Hall and Marron (1987), and

Linton (1995)) the use of ‘leave–one–out’ estimators ((2.1) and (2.2)) has not fully eliminated

the ‘degrees–of–freedom’ bias5 of order O(N−2h−2d).

Choice of P

If we believe that fV U, fU, π2 (u) and π3 (v,u) are infinitely many times continuously differ-

entiable, it follows from (2.11) that the best O
(
N−1

)
rate of the MSE, is not attained unless

P > d. For example, in the case d = 2, we shall use P > 2. As Assumption (A2) permits, a

higher value for P must be chosen for larger values of d. In this sense, the use of oscillating

higher–order kernels guarantees the best rate of convergence.

2.3 ‘Nonparametric’ vs ‘Semiparametric’ Optimal Bandwidths

For the case d = 2, the asymptotic properties of kernel-based estimator f̂V |U (v|u;h), used in

(2.3), were first derived by Hyndman, Bashtannyk, and Grunwald (1996), and discussed further

by Chen, Linton, and Robinson (2001). When d > 2, it follows from their results that the

Integrated MSE–minimizing optimal bandwidth is

h+
opt ∝ N−1/(2P+d). (2.12)

A direct comparison with (2.10) indicates that in the semiparametric case, the optimal band-

width shrinks to 0 at a faster rate of its nonparametric component’s optimal bandwidth h+
opt.

This phenomenon is known as ‘asymptotic undersmoothing’. Other semiparametric estimators

sharing this feature are Robinson (1988), Powell, Stock, and Stoker (1989), Härdle and Stoker

(1989), and Härdle, Hart, Marron, and Tsybakov (1992), among others.

It should also be noticed that this comparison does not imply that hopt is numerically smaller

than h+
opt in any particular case or sample size. Particularly, let A0 be the proportionality

5Ichimura and Linton (2005) proposed an explicit bias correction mechanism that indeed ‘knocked’ this term

out, allowing for a smaller MSE for Hirano, Imbens, and Ridder (2003)’s estimator. This method can potentially

be adapted to our framework.
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constant6 in (2.12). It then follows that

hopt = D0ENh+
opt, where

D0 = C0/A0,

EN = N−P/[(2P+d)(P+d)].

D0 is an adjustment factor that depends on the underlying structure of the bias and variance

of f̂V |U and η̃. In general, D0 ≶ 1, and it does not vary with sample size. On the other hand,

the adjustment term for sample size, EN is always less than 1 when N ≥ 2. Therefore, whether

hopt is larger or smaller than h+
opt will depend on C0 being larger or smaller than A0, and this,

in turn, relies on the bias and variance structure in a particular application.

3 Optimal ‘plug–in’ Bandwidth Estimator

If we knew B1 and B2 in (2.11), we can define C0 (and therefore hopt) by the following

minimization problem:

C0 = arg min
C0∈ℜ++

∥∥∥∥B1C
P
0 + B2

1

Cd
0

∥∥∥∥
2

.

As these quantities are unknown in general, a feasible procedure will be to replace them by

consistent estimators based on empirical implementations of (2.8) and (2.9). These estimators

for the ‘smoothing’ and ‘degrees–of–freedom’ bias terms are denoted here as B̂1, and B̂2, respec-

tively. However, with a sample of practical size, any kernel–based estimator may be affected by

boundary effects which are endemic in kernel density estimation, see Silverman (1986). In view

of Assumption (A3), this technicality is resolved here by using a known asymptotic trimming

function, aτ (v,u) in their construction7, that is

B̂1 (h0) =
η̃ (∆h0) − η̃ (h0)

hP
0 (∆P − 1)

, (3.1)

B̂2 (h∗) =
CWK

N

N∑

i=1

̟̂∗3τi, (3.2)

where ̟̂∗3τi = wiaτ (vi,ui) f̂∗Ui/f̂
2
∗V Ui, ̟3τi = wiaτ (vi,ui) fUi/f

2
V Ui, and ∆ is a known con-

stant which is greater than 1. Here we have used f̂∗V Ui ≡ f̂V U (vi,ui;h∗), f̂∗Ui ≡ f̂U (ui;h∗),

fV Ui ≡ fV U (vi,ui), and fUi ≡ fU (ui) in order to ease notation, where f̂U (·), and f̂V U (·) are

given by (2.1), and (2.2) respectively. The estimator η̃ (·) is like (2.3), after replacing ωi by

ωiaτ (vi,ui) everywhere. The estimator (3.1) is similar to the average derivative as proposed

6See Bashtannyk and Hyndman (2001) and Chen, Linton, and Robinson (2001) for derivations.
7Another possibility would be to use boundary kernels, see Gasser, Müller, and Mammitzsch (1985). Fernandes

and Monteiro (2005) derived the asymptotic behavior of asymmetric kernel functionals.
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by Powell and Stoker (1996). The quantities h∗ and h0 are pilot bandwidths which must be

chosen beforehand.

The type of asymptotic trimming used here is that proposed by Lewbel (2000a):

aτ (vi,ui) = 1
(
vi ∈

[
V + τ, V − τ

]) d−1∏

j=1

1
(
u

[j]
i ∈

[
U j + τ, U j − τ

])
, (3.3)

where 1 (·) is the indicator function that equals 1 if its argument is true and zero otherwise,

the values U j and U j , were defined in Assumption (A3), and u[j] refers to the j–th element of

the vector u. By using this type of trimming in the construction of our estimators (3.1) and

(3.2), we set to zero all terms in these averages that have observations within a distance τ of

the boundary of the support where bias of the kernel estimators are of a different order than

for the interior points. The following assumption guarantees that the trimming induced bias

goes to zero rapidly, so the consistency of the estimators are not affected.

(A7) The value τ is such that h0/τ → 0, and Nτ2 → 0 as N → ∞.

This trimming has a disadvantage in that it requires knowledge of the support of (v,u).

Nevertheless, this support could be estimated in practice. For example, Khan and Lewbel

(2007) proposed a data–dependent trimming function, by replacing U j , U j, V , and V in (3.3),

by the observed maximums and minimums from a sample of N observations of the corresponding

variables. They showed that this data–dependent feasible trimming function is asymptotically

equivalent to (3.3). Their result is applicable in situations where the boundary of the support

is unknown, and τ equals the bandwidth used in the kernel estimators above.

Consequently, the optimal bandwidth is estimated as

ĥopt = Ĉ0 × N−1/(P+d), where

Ĉ0 = arg min
C0∈ℜ++

∥∥∥∥B̂1C
P
0 + B̂2

1

Cd
0

∥∥∥∥
2

. (3.4)

An interesting characteristic of estimators (3.1) and (3.2) is that they do not require estimation

of higher order derivatives of unknown functions. This feature makes their calculation com-

putationally very simple. Likewise, the minimization problem in (3.4) is also computationally

straightforward, because it only involves a univariate numerical search over strictly positive real

numbers. The consistency8 of this procedure is ensured by the following proposition:

8An alternative estimator for B2 is given by

(
N

2

)
∑

i<j

(
̟̂ ∗3τif̂

−1
∗V Ui + ̟̂ ∗3τj f̂

−1
∗V Uj

4hd
0

)
W

2

(
vi − vj

h0

)
K2

(
ui − uj

h0

)
,

and its consistency can be proven by the exact same arguments used in this section.
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Proposition 3.1 Let Assumptions (A1)–(A3), (A4), (A6) and (A7) hold. If h∗ → 0, h0 → 0,

with Nhd
∗ → ∞, and Nh2P+d

0 → ∞ as N → ∞, then

B̂1 (h0)
p→ B1,

B̂2 (h∗)
p→ B2.

Proof. See Appendix.

An important part of this estimator of the optimal bandwidth is the choice of pilot band-

widths h∗, h0, constants ∆ and δ, and trimming parameter τ . Having to select other tunning

parameters is an unappealing feature, but practical guidance is provided here: Given the condi-

tions on h∗, an obvious way of choosing this bandwidth would be by standard cross–validation

methods9, see Silverman (1986); or using a reference rule for kernel–based conditional density

estimators, see Section 4.1. The resulting bandwidth, ĥ∗, would be of order N−1/(2P+d). We

can then set h0 = ĥ∗ × N δ, where 0 < δ < 1/ (2P + d). As a result, only ∆ > 1 and τ ≥ 0 are

left to be chosen. In practice, for a fixed number of observations, a feasible approach would be

to fix the value τ , and choose a high value of ∆ and then decrease it until B̂1 does not vary

significantly. We could iterate the above procedure till certain pre–defined convergence criteria

is met.

A technical proviso explained by Powell and Stoker (1996), for the estimated optimal band-

width of the average derivative estimator, is also applicable in this framework. That is, we

have not shown that Assumption A will guarantee the proposed ‘plug–in’ estimator η̃(ĥopt)

is asymptotically equivalent to η̂(hopt). Firstly, the calculation of η̃ itself would be subject to

some trimming with a fixed–size sample. Doing this alone will increase the MSE, by the square

of the trimming–induced bias. Secondly, the (stochastic) bandwidth ĥopt was calculated using

the same data as it is used in the construction of η̃. All the calculations used to derive the

asymptotic MSE expansion in Theorem 2.2 implicitly assume a fixed rather than a stochastic

value of h. From this, it does not immediately follow that ĥopt will be of the same order as hopt.

Although addressing this question is beyond the scope of this paper, it is possible that solutions

to this problem discussed in Powell and Stoker (1996), in the framework of density–weighted

average derivative estimators, might be applicable.

9Wand and Jones (1995), chapters 3 and 4, described in great detail many other (computationally simpler)

bandwidth selection procedures that could be used instead.

12



4 Numerical Results

4.1 Monte Carlo

This section reports the results of a small–scale Monte Carlo investigation of the finite sample

behavior of our proposed ‘plug–in’ estimator for the optimal bandwidth, and the behavior of

the associated estimated η’s. Samples were generated from a two–dimensional random variable

(V,U) having a bivariate normal distribution doubly truncated with respect to both variables.

The joint distribution is given by

fV U (v, u) = g (v, u) /G, v ≤ v ≤ v, u ≤ u ≤ u,

where

g (v, u) =
1

2πσvσu

√
1 − ρ2

×

exp

{
− 1

2 (1 − ρ2)

[(
v − µv

σv

)2

− 2ρ

(
v − µv

σv

)(
u − µu

σu

)
+

(
u − µu

σu

)2
]}

,

and

G =

u∫

u

v∫

v

g (v, u) dvdu.

The marginal density of U is then given by

fU (u) = h (u) /G, u ≤ u ≤ u,

where

h (u) =
1

σu
φ

(
u − µu

σu

)[
Φ

(((
v − µv

σv

)
− ρ

(
u − µu

σu

))
/
√

1 − ρ2

)

−Φ

(((
v − µv

σv

)
− ρ

(
u − µu

σu

))
/
√

1 − ρ2

)]
,

where φ (·) and Φ (·) represent the density and cumulative distribution of a standard normal

random variable. The object of interest in this simulation is

η = E
[
1/fV |U (V |U)

]
,

where

fV |U (v| u) = g (v, u) /h (u) .

For simplicity, we set v = u = −3, v = u = 3, µv = 0, σ2
v = σ2

u = 6, and consider 3 designs

Design 1: µu = 0;

Design 2: µu = 1;

Design 3: µu = 2.
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For each design, we consider 2 cases based on possible values for ρ: (a) ρ = 0, and (b) ρ = 1/4.

Their associated joint, conditional and marginal densities can be visualized in Figures 1, 2,

and 3. These designs were chosen so that their associated marginal densities are bounded well

above zero at the boundary of their support. A similar property is displayed by their conditional

densities.

We set P = 2, and set W ≡ K to be a gaussian second–order kernel. Their associated

constants are dK = 1, and CK = 1/2
√

π.

Reference Rules

Preliminary bandwidths employed in this simulation study are based on the following three

assumptions underlying the joint distribution of (V,U):

(R1) fV U (v, u) ≡ g (u, v), with v = u = −∞, v = u = +∞, µv = µu = u, and σ2
v = σ2

u = σ2.

Under this assumption, Chen, Linton, and Robinson (2001) calculated

A0 = σ

[
16π

√
2
(
1 − ρ2

)5/2
C2

K

(15ρ4 − 50ρ2 + 39) d2
K

]1/6

≡ AR1.

(R2) V |U = u ∼ N(c + du, (p + qu)2), U is uniform over [u, u], with −∞ ≤ V ≤ +∞. Under

this assumption, similar calculations to those in Bashtannyk and Hyndman (2001) shows

A0 =

[
256q

√
πC2

K

3z (4 + w + 8d2 − 12q2) d2
K

]1/6

≡ AR2,

where w = 19q4 + 4d4 + 28q2d2, and z = [(p + qu)4 − (p + qu)4]/ (p + qu)4 (p + qu)4.

(R3) fV U (v, u) ≡ g (u, v), with v = u = −∞, v = u = +∞, µv = µu = 0, ρ = 0, and σ2
v = σ2.

Under this assumption, fV |U (v| u) = fV (v), for which Silverman (1986), pages 45–47,

calculated

A0 =

[
8
√

πCK

3d2
K

]1/5

σ ≡ AR3.

We make these reference rules operational by making AR1, AR2, and AR3 vary with each

replication. We define these quantities as ÂR1, ÂR2, and ÂR3 respectively. Specifically, let

{vs
i , u

s
i}Ns

i=1 be a size–N s generated data set at draw s, then ÂR1 is obtained by replacing σ2,

and ρ by σ̂2 = N−1
∑N

i=1 (vs
i − vs), and ρ̂ = [σ̂2 (N − 1)]−1

∑N
i=1 (vs

i − vs) (us
i − us) respectively.

Likewise, ÂR2 is calculated by setting u = mini=1,...,N us
i , u = maxi=1,...,N us

i , (c, d) as the least

squares coefficients from a regression of v on u, and (p, q) as the least squares coefficients from

a regression of the squared residuals from the previous regressions on u including a constant

term. Similarly, ÂR3 is made operational by replacing σ2 by σ̂2 as calculated above.
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Hence, we calculate η̃ using ĥR1 = ÂR1N
−1/6, ĥR2 = ÂR2N

−1/6, and ĥR3 = ÂR3N
−1/6. Of

course, in our designs these bandwidths are neither optimal for η, nor do they have the optimal

rate of convergence derived in Section 2.2.1. However, we have chosen them for comparison

purposes because of their computational simplicity, as well as the fact that they were the most

likely to be chosen by a practitioner prior to the results discussed in this paper.

We also look at the behavior of η̃ using our ‘plug–in’ estimator for the optimal bandwidth

explained in Section 3. We implement this estimator by setting ĥ0 = ĥ∗
RlN

δ, where ĥ∗
Rl ≡ ĥR1

for l = 1, 2, 3. Other parameters are chosen accordingly and kept constant throughout the

experiments, i.e. δ = 1/12, τ = 0 (no trimming) and ∆ = 2. The results of 2000 replications

are presented in Tables 1 to 6.

Tables 1, 3, and 5 report the small sample performance of the proposed ‘plug–in’ estimator

for the optimal bandwidth under different conditions. The true optimal bandwidths hopt, are

also reported in the first row for each case. As we would expect, higher correlation between V

and U entails a larger bandwidth in each design. These results show that the proposed ‘plug–

in’ estimator performs fairly well in all circumstances. This good performance seems not to

be affected by the choice of pilot bandwidths, h∗ and h0 in large samples. On the other hand,

there is more variation among the bandwidths predicted by the reference rules than among

the estimated ones. Numerically, differences among them become more evident when samples

sizes are large. The bandwidths’ simulated standard deviations increase as we increase the

theoretical mean of U . The use of trimming could reduce these variances.

The respective MSE are presented in Tables 2, 4, and 6. We notice that the main component

of these simulated MSE is bias instead of variance in each case, as is predicted by the expansion

derived here. The use of either the theoretical or estimated optimal bandwidths dominates the

use of those predicted by the reference rules in terms of MSE, for all sample sizes, designs

and scenarios. The MSE associated to the estimated optimal bandwidths are numerically very

close to the simulated theoretical ones.

In our designs, it is also the case that the ‘degrees–of–freedom’ bias is numerically large,

up to 10 times greater than the ‘smoothing’ bias. Similar calculations for other designs (not

presented here) have also shown such a pattern. This lends support to the use of an explicit

bias correction mechanism for such term, see for example Ichimura and Linton (2005). This

remains a topic for future research.

Finally, Figures 4, 5 and 6 show how close the theoretically optimal bandwidths are to

the actual MSE–minimizing bandwidths. The MSE for η̃ are obtained by simulation as

functions of a grid of fixed bandwidth parameters. The vertical gray lines represent the optimal

bandwidths predicted by Theorem 2.2 in each case. Note that even for small sample sizes, the

approximation results are very good. However, the quality of the approximation may deteriorate
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in situations where trimming is necessary.

4.2 Empirical Application

We now apply the results of this paper to the problem of selecting the bandwidth when es-

timating a binary response model of female labour market participation. The data set used

for this analysis is a sample from the Ecuadorian Household Income and Expenditure Survey,

which provides information on income, employment status, household composition and other

socioeconomic characteristics. The data are from interview year 2004 and were collected by

the Ecuadorian National Institute of Statistics, INEC. The analysis is limited to women aged

60 or below, whose husbands or unmarried partners earned labour income in 2004. The result-

ing sample data set contains 3447 women, 50% of whom were working for wages. Descriptive

statistics are presented in Table 7. The model is

di = 1
(
αvi + x⊤

i β + ei > 0
)

,

where di is the indicator of the i-th woman’s response, vi is the log of the partner’s monthly

income (LNHINC) normalized to have zero mean, and the other regressors xi are a constant,

the number of children not older than 3 (YCHILD), the number of older children (CHILD),

years of formal education (EDUC), age divided by 10 (AGE), and age squared divided by 100

(AGE2). For more information about the model, and alternative semiparametric estimators,

see Gerfin (1996), and Martins (2001).

Table 8 displays estimation results for parametric and semiparametric specifications, after

using the normalization |α| = 1. By assuming ei ∼ N
(
0, σ2

i

)
, the first column from the left

(σ2
i = 1), and the second (σ2

i = exp
(
z⊤γ

)
) are obtained by maximum likelihood estimation.

The third and fourth columns report results using estimators proposed by Lewbel (2000b) and

Lewbel and Schennach (2007) respectively. Standard errors are in parenthesis.

Lewbel’s (2000b) estimator is equivalent to a standard linear least squares regression of

[d − 1 (v > 0)] /f̂V |X (v|x) on x, where f̂V |X is calculated using the gaussian kernel. The band-

width was chosen using the procedure described in Section 3 where the object of interest was

in this case E[x (d − 1 (v > 0)) /fV |X (v|x)]. Figure 7 shows that the estimated optimal band-

width is approximately 0.88. By using this bandwidth, 45 observations were excluded for which

the estimator of fV X was exactly zero. The same bandwidth was used to construct their asymp-

totic standard errors. The fourth estimator in Table 8 is the ordered data estimator in Lewbel

and Schennach (2007, Corollary 7) which does not require any smoothing under rather strong

conditions.

The two probit and kernel-based sets of estimates are quite similar in general. The kernel-

based least squares parameter estimates are all within two standard errors of the simple and
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heteroskedastic probit estimates. All set of estimates predicts that the effect of the number

of children older than 3 years is small and statistically insignificant. On the other hand, this

variable can significantly explain heteroskedasticity in a parametric fashion. However, for all

other regressors, the ordered data estimates are generally different with bigger standard errors.

5 Discrete Covariates

In this section, we examine the situation in which the conditioning variables, U, have continuous

as well as discrete components. In this case, the order of magnitude of the optimal bandwidth

only depends on the number of continuously distributed elements of the random vector
(
V,U⊤

)
.

In particular, let us consider the case when the random vector, U, can be partitioned

as U =
(
U(1)⊤,U(2)⊤

)
, with U(1) ∈ ΩU(1) , and U(2) ∈ ΩU(2) , where ΩU(1) ⊂ ℜd(1)−1, and

ΩU(2) ⊂ ℜd(2)
is a set with finite number of real points, such that d(1) + d(2) = d with d(1) ≥ 1

as before. Let fV U(1)|U(2)

(
v,u(1)

∣∣u(2)
)

be the probability density of
(
V,U(1)

)
conditional

on U(2) = u(2), let f
U(1)|U(2)

(
U(1)

∣∣U(2)
)

be the probability density of U(1) conditional on

U(2) = u(2), and let p
(
u(2)

)
be the probability mass that u(2) ∈ ΩU(2) . Then

fV U(v,u(1),u(2)) ≡ fV U(v,u) = fV U(1)|U(2)(v,u(1)
∣∣∣u(2))p(u(2)), and

fU(u(1),u(2)) ≡ fU(u) = f
U(1)|U(2)(u

(1)
∣∣∣u(2))p(u(2)).

We also replace (2.1) and (2.2) with

f̂U(u
(1)
i ,u

(2)
i ;h) ≡ 1

N − 1

N∑

j=1
j 6=i

1

hd(1)−1
K
(

u
(1)
j − u

(1)
i

h

)
1
(
u

(2)
j = u

(2)
i

)
, and (5.1)

f̂V U(vi,u
(1)
i ,u

(2)
i ;h) ≡ 1

N − 1

N∑

j=1
j 6=i

1

hd(1)
W

(
vj − vi

h

)
K
(

u
(1)
j − u

(1)
i

h

)
1
(
u

(2)
j = u

(2)
i

)
, (5.2)

respectively, and recalculate (2.3) and (2.4). We also redefine π1(u
(1),u(2)) ≡ π1 (u), π2(u

(1)

,u(2)) ≡ π2(u), π̃1

(
v,u(1),u(2)

)
≡ π̃1(v,u), π̃2

(
v,u(1),u(2)

)
≡ π̃2(v,u), π3(v,u(1),u(2)) ≡

π3(v,u), π4(v,u(1),u(2)) ≡ π4(v,u), π5(v,u(1),u(2)) ≡ π5(v,u), σ2
1(u

(1),u(2)) ≡ σ2
1(u), σ2

2(u
(1),

u(2)) ≡ σ2
2(u), σ12

(
u(1),u(2)

)
≡ σ12(u), σ̃2

1(v,u(1),u(2)) ≡ σ̃2
1(v,u), σ̃13(v,u(1),u(2)) ≡ σ̃13(v,u),

σ̃14(v,u(1),u(2)) ≡ σ̃14(v,u), σ̃15(v,u(1),u(2)) ≡ σ̃15(v,u), σ̃23(v,u(1),u(2)) ≡ σ̃23(v,u), σ̃24(v,

u(1),u(2)) ≡ σ̃24(v,u), σ̃25(v,u(1),u(2)) ≡ σ̃25(v,u), σ2
3(v,u(1),u(2)) ≡ σ2

3(v,u), σ̃34(v,u(1),u(2))

≡ σ̃34(v,u), σ̃35(v,u(1),u(2)) ≡ σ̃35(v,u), σ2
4(v,u(1),u(2)), σ̃45(v,u(1),u(2)) ≡ σ̃45(v,u), and

σ2
5(v,u(1),u(2)) ≡ σ2

5(v,u).

In order to extend our results to this mixed case, we need to re–state Assumptions (A3)

and (A6) as:
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(A3*) f
U(1)|U(2)(u(1)

∣∣u(2)), π1(u
(1),u(2))f

U(1)|U(2)(u(1)
∣∣u(2)) and π2(u

(1),u(2))f
U(1)|U(2)(u(1)

∣∣

u(2)), understood as functions of u(1), exist and have bounded continuous partial deriva-

tives up to the order P on ΩU(1) ≡
∏d(1)−1

j=1

[
U

(1)
j , U

(1)
j

]
, where −∞ < U

(1)
j < U

(1)
j <

∞, for j = 1, . . . , d(1) − 1. Furthermore, fV U(1)|U(2)(v,u(1)
∣∣u(2)), π̃1(v,u(1),u(2)) ×

fV U(1)|U(2)(v,u(1)
∣∣u(2)), π̃2(v,u(1),u(2))fV U(1)|U(2)(v,u(1)

∣∣u(2)), π3(v,u(1),u(2))fV U(1)|U(2)

(v,u(1)
∣∣u(2)), π4(v,u(1),u(2))fV U(1)|U(2)(v,u(1)

∣∣u(2)), and π5(v,u(1),u(2))fV U(1)|U(2)(v,

u(1)|u(2)) understood as functions of v and u(1), exist and have bounded continuous par-

tial derivatives up to the order P on ΩV U(1) ≡
[
V , V

]
× ΩU(1) , for −∞ < V < V < ∞.

The probability mass function p(u(2)) > 0.

(A6*) The functions, σ2
1(u

(1),u(2))f
U(1)|U(2)(u(1)

∣∣u(2)), σ2
2(u

(1),u(2))f
U(1)|U(2)(u(1)

∣∣u(2)) and

σ12

(
u(1),u(2)

)
f

U(1)|U(2)(u(1)
∣∣u(2)), understood as functions of u(1), are bounded on their

compact support ΩU(1) . Similarly, σ̃2
1(v,u(1),u(2))fV U(1)|U(2)(v,u(1)

∣∣u(2)), σ2
3(v,u(1),u(2))

fV U(1)|U(2)(v,u(1)
∣∣u(2)), σ2

4(v,u(1),u(2))fV U(1)|U(2)(v,u(1)
∣∣u(2)), σ2

5(v,u(1),u(2))fV U(1)|U(2)

(v,u(1)
∣∣u(2)), and σ̃lk(v,u(1),u(2))fV U(1)|U(2)(v,u(1)

∣∣u(2)), for ∀l, k = 1, 2, 3, 4 such that

l 6= k, understood as functions of v and u(1), are bounded on their compact support

ΩV U(1) .

As expected, in this mixed case scenario, similar conditions have to be imposed on the

continuous part of the problem, but no new techniques are required in order to prove the

following corollary:

Corollary 5.0.1 Let Assumptions (A1), (A2) hold, and Assumptions (A3*) and (A6*) hold

for every u(2) ∈ Ωu(2) , then

h
(1)
opt = C

(1)
0 ×

(
1

N

)1/(P+d(1))

, where

C
(1)
0 = arg min

C
(1)
0 ∈ℜ++

∥∥∥∥B
(1)
1 CP

0 + B
(1)
2

1

Cd
0

∥∥∥∥
2

.

and

B
(1)
1 =

∑

u(2)∈Ω
u
(2)

∫
π2(u

(1),u(2))S
(1)
K (u(1),u(2))fU(u(1),u(2))du(1)

−
∑

u(2)∈Ω
u
(2)

∫
π3(v,u(1),u(2))S

(1)
WK(v,u(1),u(2))fV U(v,u(1),u(2))dvdu(1), (5.3)

B
(1)
2 = CWK

∑

u(2)∈Ω
u(2)

∫
π3(v,u(1),u(2))fV U(v,u(1),u(2))dvdu(1), (5.4)
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with

CWK =

[∫
W 2 (c) dc

] [∫
K2 (c) dc

]d(1)−1

,

S
(1)
K (u(1),u(2)) = dK

1

P !

d(1)−1∑

j=1

∂P

(∂u
(1)
j )P

fu(u(1),u(2)),

S
(1)
WK(v,u(1),u(2)) =

1

P !

[
dW

∂P

∂vP
fV U(v,u(1),u(2))

+ dK

d(1)−1∑

j=1

∂P

(∂u
(1)
j )P

fV U(v,u(1),u(2))

]
.

Proof. See proof of Theorem 2.2 in the Appendix.

From this result, and similarly to other nonparametric and semiparametric models (see

Delgado and Mora (1995)), we note that the MSE–minimizing rate of bandwidth shrinkage

in our case only depends on the number of continuously distributed random variables in our

sample from (V,U). The unknown constants (5.4) and (5.3) can be consistently estimated,

by simple extensions of the estimators described in Section 3. Likewise, trimming (if needed)

should be performed only with respect to the continuously distributed variables, in particular

aτ (vi,u
(1)
i ) = 1

(
vi ∈

[
V + τ, V − τ

]) d(1)−1∏

j=1

1
(
u

(1)[j]
i ∈

[
U

(1)
j + τ, U

(1)
j − τ

])
.

6 Conclusion

A crucial part of estimators with a nonparametric component is the choice of the smoothing

parameter. Our main objective in this paper is to provide some guidance for choice of bandwidth

for a class of semiparametric estimators that employ kernel estimators in the form of inverse

conditional–density weighted averages. By exploiting the fact that these estimators can be

asymptotically represented as a linear combination of functions of U–statistics, we derive a

formula for the optimal bandwidth based on a second–order Mean Squared Error expansion.

The derived formula for the optimal bandwidth equates the order of magnitude arising from

the squared of the sum of two biases: a ‘smoothing bias’ and a ‘degrees–of–freedom’ bias.

This formula shows that the optimal bandwidth, for estimating the parameter of interest, must

decrease towards zero at a faster rate than the optimal for its nonparametric component. In

this sense, asymptotic undersmoothing (as explained in Powell and Stoker (1996)) is needed.

A ‘plug–in’ estimator of the optimal bandwidth is also constructed exploiting the semipara-

metric estimator’s biases formulae. The problem of random denominators is also addressed
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in the construction of the proposed estimator through the use of a trimming function. This

trimming function, proposed by Lewbel (2000a), is set to give zero–weights in the averages, to

observations which are within a certain distance of the boundary of the observed support of

the distribution. This estimator is shown to perform fairly well in small samples in a Monte

Carlo experiment. An empirical implementation is also performed regarding the labour force

participation decision for Ecuadorian women in 2004. We also discuss how the formula for the

optimal bandwidth can be adapted when continuous as well as discrete elements are present in

the weighted averages.
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Appendix A: Main Proofs

Let ‖·‖ denote Euclidean norm, and let 〈·, ·〉 represent the inner product when applied to vectors.

We also use the following results from Masry (1996) (see Silverman (1978) and Collomb and

Härdle (1986) for earlier results):

max
i=1,...,N

∣∣∣f̂V U (vi,ui;h) − fV U (vi,ui)
∣∣∣ = Op

(√
log N

Nhd
+ hP

)
, (A-1)

max
i=1,...,N

∣∣∣f̂U (ui;h) − fU (ui)
∣∣∣ = Op

(√
log N

Nhd−1
+ hP

)
. (A-2)

Proof of Lemma 2.1

Firstly, from Assumption (A3), it follows that ϑ̂2i (h) is

∣∣∣N−1/2∑N
i=1ϑ̂2i (h)

∣∣∣ ≤
(
N−1/2∑N

i=1 ‖ωi‖ |fUi|
)[

min
i=1,...,N

∣∣∣f̂V Ui

∣∣∣
]−1

×
[

max
i=1,...,N

∣∣∣f̂V Ui − fV Ui

∣∣∣
]3 [

min
i=1,...,N

∣∣f3
V Ui

∣∣
]−1

≤
(
N−1/2∑N

i=1 ‖ωi‖ |fUi|
)[

min
i=1,...,N

|fV Ui|
]−1

(A-3)

×
[

max
i=1,...,N

∣∣∣f̂V Ui − fV Ui

∣∣∣
]3 [

min
i=1,...,N

∣∣f3
V Ui

∣∣
]−1

= Op

(√
N
)

Op



(√

log N

Nhd
+ hP

)3

 = op

(
N−(P−d)/(P+d)

)
,

where (A-3) follows after observing that

inf
ΩV U

f̂V U (v,u;h) ≥ inf
ΩV U

fV U (v,u) − sup
ΩV U

∣∣∣f̂V U (v,u;h) − fV U (v,u)
∣∣∣

≥ inf
ΩV U

fV U (v,u) + op (1) ,

and the last inequality follows from (A-1). Finally, by the exact same argument, it also follows

that

∣∣∣N−1/2∑N
i=1ϑ̂1i (h)

∣∣∣ ≤
(
N−1/2∑N

i=1 ‖ωi‖
)[

min
i=1,...,N

|fV Ui|
]−1

[
max

i=1,...,N

∣∣∣f̂V Ui − fV Ui

∣∣∣
]2 [

max
i=1,...,N

∣∣∣f̂Ui − fUi

∣∣∣
] [

min
i=1,...,N

‖fV Ui‖2

]

= op

(
N−(P−d)/(P+d)

)
,

as required.
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Sketch of Proof of Theorem 2.2

The proof of this theorem will require us to look at the contribution to the MSE from

each of the elements on the right–hand side of (2.6). Firstly, let us denote δ1 = E [̟1],

δ2 = E [π2 (U) fU (U)], δ3 = E [π3 (V,U) fV U (V,U)], δ4 = E [π4 (V,U) fU (U) fV U (V,U)],

and δ5 = E
[
π5 (V,U) f2

V U (V,U)
]
. Then, by using the definitions in Section 2 and the proper-

ties of conditional expectations, it follows that

δ1 = δ2 = δ3 = δ4 = δ5 = η.

We are now able to write E[‖η̂ (h) − η‖2] as,

E
[
‖η̂ (h) − η‖2

]
= E

[∥∥∥δ̂1 − δ1

∥∥∥
2
]

(A-4)

+ 4E

[∥∥∥δ̂2 (h) − δ2

∥∥∥
2
]

(A-5)

+ 4E

[∥∥∥δ̂3 (h) − δ3

∥∥∥
2
]

(A-6)

+ E

[∥∥∥δ̂4 (h)
∥∥∥

2
]

(A-7)

+ E

[∥∥∥δ̂5 (h)
∥∥∥

2
]

(A-8)

+ 4E
[〈

δ̂1 − δ1, δ̂2 (h) − δ2

〉]
(A-9)

− 4E
[〈

δ̂1 − δ1, δ̂3 (h) − δ3

〉]
(A-10)

− 2E
[〈

δ̂1 − δ1, δ̂4 (h) − δ4

〉]
(A-11)

+ 2E
[〈

δ̂1 − δ1, δ̂5 (h) − δ5

〉]
(A-12)

− 8E
[〈

δ̂2 (h) − δ2, δ̂3 (h) − δ3

〉]
(A-13)

− 4E
[〈

δ̂2 (h) − δ2, δ̂4 (h) − δ4

〉]
(A-14)

+ 4E
[〈

δ̂2 (h) − δ2, δ̂5 (h) − δ5

〉]
(A-15)

+ 4E
[〈

δ̂3 (h) − δ3, δ̂4 (h) − δ4

〉]
(A-16)

− 4E
[〈

δ̂3 (h) − δ3, δ̂5 (h) − δ5

〉]
(A-17)

− 2E
[〈

δ̂4 (h) − δ4, δ5 (h) − δ5

〉]
. (A-18)

Let us define the following quantities:

B1,1 =

∫
π2 (u)SK (u) fU (u) du,
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B1,2 =

∫
π3 (v,u) SWK (v,u) fV U (v,u) dvdu, and

B2 = CWK

∫
π3 (v,u) fV U (v,u) dvdu,

where SK (u) and SWK (v,u) are defined in the main text. Then, under the assumptions of

the theorem it is possible to show (see Jacho-Chávez (2006)) that the leading terms in the

expansion of (A-4)– (A-18) are:

Term: Contribution: h2P Contribution: N−1hP−d Contribution: N−2h−2d

(A-4) – – –

(A-5) +4 ‖B1,1‖2 – –

(A-6) +4 ‖B1,2‖2 – –

(A-7) + ‖B1,1+B1,2‖2 – –

(A-8) +4 ‖B1,2‖2 +4 〈B2,B1,2〉 ‖B2‖2

(A-9) – – –

(A-10) – – –

(A-11) – – –

(A-12) – – –

(A-13) −8 〈B1,1,B1,2〉 – –

(A-14) −4 〈B1,1,B1,1+B1,2〉 – –

(A-15) +8 〈B1,1,B1,2〉 +4 〈B2,B1,1〉 –

(A-16) +4 〈B1,2,B1,1+B1,2〉 – –

(A-17) −8 ‖B1,2‖2 −4 〈B2,B1,2〉 –

(A-18) −4 〈B1,1+B1,2,B1,2〉 −2 〈B2,B1,1+B1,2〉 –

Net: ‖B1,1 − B1,2‖2 2 〈B1,1 − B1,2,B2〉 ‖B2‖2

There are also terms of smaller order, namely O(N−1), O(N−1hP + N−2) and o(N−1hP +

N−2h−2d + h2P ). We conclude by grouping the leading terms as

h2P

∥∥∥∥
∫

π2 (u) SK (u) fU (u) du−
∫

π3 (v,u) SWK (v,u) fV U (v,u) dvdu

∥∥∥∥
2

+
2CWK

Nhd
hP

〈∫
π3 (v,u) fV U (v,u) dvdu

,

∫
π2 (u) SK (u) fU (u) du−

∫
π3 (v,u) SWK (v,u) fV U (v,u) dvdu

〉

+
C2

WK

N2h2d

∥∥∥∥
∫

π3 (v,u) fV U (v,u) dvdu

∥∥∥∥
2

= h2P ‖B1,1−B1,2‖2 + 2
hP

Nhd
〈B2,B1,1−B1,2〉 +

1

N2h2d
‖B2‖2

=
∥∥∥hP

B1 + B2N
−1h−d

∥∥∥
2
,

where B1 = B1,1−B1,2.
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Proof of Proposition 3.1

In what follows, we make use of the following identities:

f̂Ui

f̂V Ui

− fUi

fV Ui
=

f̂Ui − fUi

fV Ui
−

fUi

(
f̂V Ui − fV Ui

)

f2
V Ui

(A-19)

+
fUi

(
f̂V Ui − fV Ui

)2

f2
V Uif̂V Ui

−

(
f̂V Ui − fV Ui

)(
f̂Ui − fUi

)

fV Uif̂V Ui

, and

f̂Ui

f̂2
V Ui

− fUi

f2
V Ui

=
f̂Ui − fUi

f2
V Ui

−
fUi

(
f̂V Ui − fV Ui

)(
f̂V Ui + fV Ui

)

f4
V Ui

(A-20)

+
fUi

(
f̂V Ui − fV Ui

)2 (
f̂V Ui + fV Ui

)2

f4
V Uif̂

2
V Ui

−

(
f̂V Ui − fV Ui

)(
f̂Ui − fUi

)(
f̂V Ui + fV Ui

)

f2
V Uif̂

2
V Ui

.

Term: B̂1 (h0)

Firstly, it follows from (A-19) that

η̃ (∆h0) − η̃ (h0) = δ̂2 (∆h0) − δ̂2 (h0) −
[
δ̂3 (∆h0) − δ̂3 (h0)

]

+ N−1
N∑

i=1

(ϑ̂1i (∆h0) − ϑ̂2i (∆h0))ωiaτ (vi,ui) (A-21)

− N−1
N∑

i=1

(ϑ̂1i (h0) − ϑ̂2i (h0))ωiaτ (vi,ui) , (A-22)

where (A-21) and (A-22) are Op(N
−1h−d

0 log N + h2P
0 ) because of Assumptions (A1), (A2),

(A3), (A4), and results (A-20), (A-1), (A-2). That is,

η̃ (∆h0) − η̃ (h0)

hP
0 (∆P − 1)

=

(
N

2

)−1∑

i<j

p2 (t2τi, t2τj ;∆h0) − p2 (t2τi, t2τj ;h0)

hP
0 (∆P − 1)

−
(

N

2

)−1∑

i<j

p3 (t3τi, t3τj ;∆h0) − p3 (t3τi, t3τj ;h0)

hP
0 (∆P − 1)

+ Op((NhP+d
0 )−1 log N + hP

0 ),

which means that B̂1 (h0) is the sum of two U–statistics plus a reminder that is op (1), because

under the conditions of the proposition, h0 → 0 and NhP+d
0 → ∞ as N → ∞. Given Lemma
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B-1, it then follows from Lemma 3.1 (page 1410) in Powell, Stock, and Stoker (1989), and

Theorem A (page 4) in Lewbel (2000a), that (η̃ (∆h0) − η̃ (h0)) /(hP
0 (∆P − 1)) is consistent for

E

[
ω

(
SK (U)

fV U (V,U)
− fU (U) SWK (V,U)

f2
V U (V,U)

)
aτ (V,U)

]
,

This is true because,

∥∥∥∥E
[
ω

(
SK (U)

fV U (V,U)
− fU (U) SWK (V,U)

f2
V U (V,U)

)
(1 − aτ (V,U))

]∥∥∥∥
2

≤
[

sup
ΩV U

‖ω‖ sup
ΩV U

∣∣∣∣
SK (u)

fV U (v,u)
− fU (u) SWK (v,u)

f2
V U (v,u)

∣∣∣∣E [1 − aτ (V,U)]

]2

. (A-23)

Now E [1 − aτ (V,U)] equals the probability that (v,u) is within a distance τ of the boundary

of ΩV U, which is less or equal to supΩV U
fV U (v,u) times the volume of the space within a

distance τ of the boundary or ΩV U. This volume is O (τ), so from Assumptions (A3) and (A6),

we have that (A-23) is O (τ) = O(N−1/2(N1/2τ)) = o(N−1/2), where the last equality follows

from Assumption (A7). Therefore, under the conditions of the proposition, we conclude that

B̂1 (h0)
p→ B1 as N → ∞.

Term: B̂2 (h∗)

Notice that,

B̂2 (h∗) =
CWK

N

N∑

i=1

̟3τi +
CWK

N

N∑

i=1

̟̂∗3τi − ̟3τi, (A-24)

where the second term on the right–hand side of (A-24) is bounded above by

CWK

(
1

N

N∑

i=1

‖ωi‖2

)
max

i=1,...,n

∣∣∣∣∣
f̂Ui

f̂2
V Ui

− fUi

f2
V Ui

∣∣∣∣∣ = Op

(√
log N

Nhd
∗

+ hP
∗

)
,

which is op (1) by Assumption (A4), representation (A-20), and the assumptions of the propo-

sition (h∗ → 0 and Nhd
∗ → ∞ as N → ∞). The result follows from Kolmogorov’s Law of Large

Numbers when applied to the first term in the right–hand side of (A-24), and conclude that

B̂2 (h∗)
p→ B2, as N → ∞.
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Appendix B: Technical Lemmas

Lemma B-1 Let Assumptions (A1)–(A3), (A4), (A6) and (A7) hold, then

E
[
‖p3 (t3τ1, t3τ2;∆h0) − p3 (t3τ1, t3τ2;h0)‖2 /

[
hP

0

(
1 − ∆P

)]2]
= o (N) , (B-1)

E
[
‖p2 (t2τ1, t2τ2;∆h0) − p2 (t2τ1, t2τ2;h0)‖2 /

[
hP

0

(
1 − ∆P

)]2]
= o (N) . (B-2)

Proof. Recall t⊤3τ1 =
(
̟⊤

3τ1, V1,U
⊤
1

)
, where ̟3τ1 = ̟31aτ (V1,U1), and define ̺ǫτ (v,u) ≡

E [‖̟3τ1‖ǫ|V1 = v,U1 = u] for ǫ = 1, 2, 3, 4. Then

E
[
‖p3 (t3τ1, t3τ2;∆h0) − p3 (t3τ1, t3τ2;h0)‖2 /

[
hP

0

(
1 − ∆P

)]2]

= E

[(
c∆

h2P
0

)∥∥∥∥
̟3τ1 + ̟3τ2

2hd
0

∥∥∥∥
2

W 2

(
V1 − V2

h0

)
K2

(
U1 − U2

h0

)]

=

∫ (
c∆

4h2P+d
0

)
fV U (z + ch0, z + ch0) fV U (z, z)×

[̺2τ (z + ch0, z + ch0) + ̺2τ (z, z) + 2 〈̺0τ (z + ch0, z + ch0) , ̺0τ (z, z)〉]×
W 2 (c)K2 (c) dzdcdzdc

= O(h
−(2P+d)
0 ) = O(N(Nh2P+d

0 )−1) = o (N) ,

where c∆ =
(
1 − ∆2

)
/
(
∆
(
1 − ∆P

))2
, and ̺0τ (v,u) ≡ E [̟3τ1|V1 = v,U1 = u]. The second

equality uses the change of variables from (y,y⊤, z, z⊤) to (c = h−1
0 (y − z) , c⊤ = h−1

0 (y −
z)⊤, z, z⊤) with jacobian hd

0. This change of variables is not affected by boundary effects

because of Assumptions (A1) and (A2), and the fact that aτ (z, z) = 0 for all (z, z) within a

distance τ of the boundary of ΩV U, with h0/τ → 0. The last equality uses the continuity of

the ̺ǫτ ’s and Assumption (A7). (B-2) follows the exact same arguments and therefore it is

omitted.
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Table 1: Monte Carlo results for Design 1: Bandwidth Estimation

N = 200 N = 400 N = 600

Mean SD Mean SD Mean SD

ρ = 0 hopt 0.6530 – 0.5491 – 0.4962 –

ĥopt;R1 0.7006 0.0583 0.5654 0.0228 0.5024 0.0151

ĥopt;R2 0.6994 0.0628 0.5651 0.0227 0.5024 0.0144

ĥopt;R3 0.6877 0.0311 0.5626 0.0146 0.5019 0.0104

ĥR1 0.5955 0.0220 0.5317 0.0135 0.4968 0.0102

ĥR2 0.6055 0.0395 0.5450 0.0237 0.5100 0.0178

ĥR3 0.6846 0.0252 0.6110 0.0155 0.5706 0.0117

ρ = 1/4 hopt 0.6664 – 0.5603 – 0.5063 –

ĥopt;R1 0.7024 0.0802 0.5698 0.0354 0.5059 0.0192

ĥopt;R2 0.7029 0.1012 0.5693 0.0399 0.5058 0.0195

ĥopt;R3 0.6872 0.0399 0.5636 0.0190 0.5033 0.0124

ĥR1 0.5918 0.0210 0.5283 0.0133 0.4938 0.0102

ĥR2 0.5931 0.0385 0.5336 0.0237 0.5003 0.0181

ĥR3 0.6823 0.0243 0.6083 0.0153 0.5686 0.0118

a Means and standard deviations (SD) are based on 2000 replications.
b Estimated bandwidths: ĥopt;R1, ĥopt;R2, and ĥopt;R3 were calculated

by setting h0 = ĥR1N
1/12, h0 = ĥR2N

1/12, and h0 = ĥR3N
1/12 in

Section 3, respectively. Similarly, auxiliary bandwidths were set h∗ =

ĥR1, h∗ = ĥR2, and h∗ = ĥR3 respectively.
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Table 2: Monte Carlo results for Design 1: Parameter η

N = 200 N = 400 N = 600

Bias SD MSE Bias SD MSE Bias SD MSE

ρ = 0 η̃ (hopt) 0.8092 0.1598 0.6548 0.6593 0.0953 0.4347 0.5882 0.0731 0.3460

η̃(ĥopt;R1) 0.7932 0.1594 0.6291 0.6583 0.0961 0.4333 0.5878 0.0741 0.3455

η̃(ĥopt;R2) 0.7924 0.1595 0.6279 0.6585 0.0962 0.4336 0.5880 0.0741 0.3458

η̃(ĥopt;R3) 0.7980 0.1576 0.6368 0.6596 0.0959 0.4350 0.5884 0.0740 0.3463

η̃(ĥR1) 0.8378 0.1658 0.7019 0.6616 0.0955 0.4377 0.5896 0.0737 0.3477

η̃(ĥR2) 0.8387 0.1641 0.7034 0.6637 0.0960 0.4405 0.5924 0.0747 0.3510

η̃(ĥR3) 0.8124 0.1575 0.6600 0.6700 0.0978 0.4489 0.6062 0.0764 0.3675

ρ = 1/4 η̃ (hopt) 0.7816 0.1650 0.6108 0.6395 0.1016 0.4090 0.5751 0.0773 0.3307

η̃(ĥopt;R1) 0.7688 0.1641 0.5911 0.6357 0.1014 0.4041 0.5738 0.0780 0.3292

η̃(ĥopt;R2) 0.7688 0.1725 0.5911 0.6355 0.1018 0.4039 0.5737 0.0780 0.3291

η̃(ĥopt;R3) 0.7720 0.1591 0.5959 0.6371 0.1010 0.4059 0.5740 0.0778 0.3295

η̃(ĥR1) 0.8166 0.1855 0.6669 0.6453 0.1037 0.4164 0.5759 0.0776 0.3317

η̃(ĥR2) 0.8230 0.1989 0.6774 0.6468 0.1047 0.4183 0.5783 0.0780 0.3344

η̃(ĥR3) 0.7851 0.1628 0.6164 0.6436 0.1018 0.4142 0.5868 0.0794 0.3444

a Simulated biases, standard deviations, and average Mean Squared Error (MSE) are based on 2000

replications.
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Table 3: Monte Carlo results for Design 2: Bandwidth Estimation

N = 200 N = 400 N = 600

Mean SD Mean SD Mean SD

ρ = 0 hopt 0.6595 – 0.5545 – 0.5011 –

ĥopt;R1 0.7027 0.0826 0.5671 0.0331 0.5032 0.0175

ĥopt;R2 0.7011 0.0951 0.5665 0.0343 0.5031 0.0166

ĥopt;R3 0.6883 0.0408 0.5630 0.0186 0.5021 0.0112

ĥR1 0.5961 0.0214 0.5317 0.0134 0.4971 0.0103

ĥR2 0.6053 0.0398 0.5445 0.0244 0.5107 0.0185

ĥR3 0.6853 0.0246 0.6109 0.0154 0.5710 0.0118

ρ = 1/4 hopt 0.6755 – 0.5680 – 0.5133 –

ĥopt;R1 0.7090 0.1729 0.5722 0.0652 0.5084 0.0299

ĥopt;R2 0.7100 0.2604 0.5719 0.0724 0.5082 0.0322

ĥopt;R3 0.6906 0.0712 0.5655 0.0324 0.5050 0.0164

ĥR1 0.5917 0.0216 0.5276 0.0132 0.4934 0.0101

ĥR2 0.5924 0.0407 0.5332 0.0246 0.4996 0.0184

ĥR3 0.6820 0.0249 0.6071 0.0153 0.5681 0.0116

a Means and standard deviations (SD) are based on 2000 replications.
b Estimated bandwidths: ĥopt;R1, ĥopt;R2, and ĥopt;R3 were calculated

by setting h0 = ĥR1N
1/12, h0 = ĥR2N

1/12, and h0 = ĥR3N
1/12 in

Section 3, respectively. Similarly, auxiliary bandwidths were set h∗ =

ĥR1, h∗ = ĥR2, and h∗ = ĥR3 respectively.
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Table 4: Monte Carlo results for Design 2: Parameter η

N = 200 N = 400 N = 600

Bias SD MSE Bias SD MSE Bias SD MSE

ρ = 0 η̃ (hopt) 0.8048 0.1655 0.6477 0.6640 0.0977 0.4409 0.5925 0.0729 0.3511

η̃(ĥopt;R1) 0.7952 0.1638 0.6323 0.6621 0.0984 0.4383 0.5920 0.0737 0.3504

η̃(ĥopt;R2) 0.7955 0.1643 0.6329 0.6622 0.0984 0.4385 0.5918 0.0737 0.3503

η̃(ĥopt;R3) 0.7978 0.1601 0.6365 0.6634 0.0976 0.4401 0.5919 0.0736 0.3503

η̃(ĥR1) 0.8336 0.1814 0.6950 0.6667 0.0982 0.4445 0.5932 0.0734 0.3519

η̃(ĥR2) 0.8362 0.1852 0.6993 0.6682 0.0988 0.4465 0.5965 0.0744 0.3559

η̃(ĥR3) 0.8098 0.1625 0.6558 0.6732 0.0991 0.4532 0.6100 0.0761 0.3721

ρ = 1/4 η̃ (hopt) 0.7750 0.1804 0.6006 0.6410 0.1093 0.4109 0.5749 0.0779 0.3305

η̃(ĥopt;R1) 0.7630 0.2567 0.5822 0.6363 0.1113 0.4049 0.5719 0.0778 0.3271

η̃(ĥopt;R2) 0.7646 0.4242 0.5846 0.6365 0.1129 0.4052 0.5721 0.0779 0.3273

η̃(ĥopt;R3) 0.7644 0.1704 0.5843 0.6375 0.1062 0.4064 0.5724 0.0775 0.3276

η̃(ĥR1) 0.8187 0.2796 0.6702 0.6470 0.1168 0.4186 0.5748 0.0787 0.3304

η̃(ĥR2) 0.8274 0.4854 0.6847 0.6486 0.1192 0.4207 0.5762 0.0795 0.3320

η̃(ĥR3) 0.7811 0.1797 0.6101 0.6461 0.1082 0.4174 0.5844 0.0799 0.3416

a Simulated biases, standard deviations, and average Mean Squared Error (MSE) are based on 2000

replications.
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Table 5: Monte Carlo results for Design 3: Bandwidth Estimation

N = 200 N = 400 N = 600

Mean SD Mean SD Mean SD

ρ = 0 hopt 0.6834 – 0.5747 – 0.5193 –

ĥopt;R1 0.7090 0.1552 0.5706 0.0672 0.5065 0.0395

ĥopt;R2 0.7070 0.1991 0.5694 0.0692 0.5061 0.0376

ĥopt;R3 0.6904 0.0694 0.5648 0.0311 0.5037 0.0200

ĥR1 0.5947 0.0213 0.5309 0.0133 0.4961 0.0100

ĥR2 0.6040 0.0444 0.5439 0.0264 0.5096 0.0197

ĥR3 0.6837 0.0245 0.6102 0.0153 0.5699 0.0115

ρ = 1/4 hopt 0.7101 – 0.5971 – 0.5396 –

ĥopt;R1 0.7169 0.4016 0.5797 0.1363 0.5138 0.0955

ĥopt;R2 0.7183 0.8889 0.5797 0.1708 0.5134 0.1141

ĥopt;R3 0.6937 0.1440 0.5699 0.0624 0.5085 0.0433

ĥR1 0.5919 0.0208 0.5273 0.0134 0.4931 0.0102

ĥR2 0.5910 0.0451 0.5305 0.0283 0.4972 0.0212

ĥR3 0.6816 0.0239 0.6068 0.0154 0.5675 0.0118

a Means and standard deviations (SD) are based on 2000 replications.
b Estimated bandwidths: ĥopt;R1, ĥopt;R2, and ĥopt;R3 were calculated

by setting h0 = ĥR1N
1/12, h0 = ĥR2N

1/12, and h0 = ĥR3N
1/12 in

Section 3, respectively. Similarly, auxiliary bandwidths were set h∗ =

ĥR1, h∗ = ĥR2, and h∗ = ĥR3 respectively.
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Table 6: Monte Carlo results for Design 3: Parameter η

N = 200 N = 400 N = 600

Bias SD MSE Bias SD MSE Bias SD MSE

ρ = 0 η̃ (hopt) 0.7943 0.1692 0.6310 0.6539 0.1008 0.4276 0.5891 0.0756 0.3470

η̃(ĥopt;R1) 0.7863 0.2013 0.6183 0.6515 0.1048 0.4244 0.5855 0.0779 0.3428

η̃(ĥopt;R2) 0.7879 0.2506 0.6208 0.6515 0.1038 0.4244 0.5855 0.0771 0.3428

η̃(ĥopt;R3) 0.7858 0.1639 0.6175 0.6510 0.1001 0.4238 0.5857 0.0759 0.3430

η̃(ĥR1) 0.8282 0.2195 0.6859 0.6600 0.1051 0.4357 0.5871 0.0764 0.3447

η̃(ĥR2) 0.8334 0.2643 0.6946 0.6602 0.1062 0.4359 0.5902 0.0771 0.3483

η̃(ĥR3) 0.8020 0.1688 0.6433 0.6612 0.1014 0.4371 0.6027 0.0778 0.3632

ρ = 1/4 η̃ (hopt) 0.7791 0.1957 0.6069 0.6487 0.1101 0.4208 0.5801 0.0818 0.3365

η̃(ĥopt;R1) 0.7721 0.7231 0.5961 0.6427 0.1535 0.4130 0.5741 0.1041 0.3296

η̃(ĥopt;R2) 0.7758 1.9588 0.6019 0.6431 0.2037 0.4136 0.5745 0.1269 0.3301

η̃(ĥopt;R3) 0.7718 0.2156 0.5957 0.6429 0.1079 0.4133 0.5738 0.0801 0.3293

η̃(ĥR1) 0.8268 0.8472 0.6835 0.6556 0.1488 0.4298 0.5787 0.0963 0.3349

η̃(ĥR2) 0.8383 0.8563 0.7027 0.6575 0.1869 0.4323 0.5810 0.1095 0.3375

η̃(ĥR3) 0.7903 0.2415 0.6246 0.6526 0.1115 0.4259 0.5878 0.0815 0.3455

a Simulated biases, standard deviations, and average Mean Squared Error (MSE) are based on 2000

replications.
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Table 7: Descriptive Statistics

Non-Participants (N = 1722) Participants (N = 1725) Total (N = 3447)

Variable Mean Std. Deviation Mean Std. Deviation Mean Std. Deviation

CHILD 1.875 1.296 1.752 1.266 1.813 1.282

YCHILD 0.523 0.671 0.334 0.553 0.428 0.622

EDUC 9.107 3.844 10.627 4.662 9.867 4.340

LNHINC 0 0.587 0 0.614 0 0.601

AGE 3.416 1.003 3.639 0.871 3.528 0.946

a The original data set consisted of 9000 urban households. From these households we created a

sample of 3447 women: 1) Aged 60 or below, married or living with partner; 2) They are not

retired or in school; 3) Whose partners are present and report positive earnings in 2004.
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Table 8: Estimation Results
Probit Heter. Probit Kernel Ordered

Variable Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

CHILD -0.041 (0.023) -0.043 (0.052) -0.053 (0.030) 0.187 (0.134)

YCHILD -0.228 (0.049) -0.548 (0.123) -0.277 (0.063) -0.632 (0.254)

EDUC 0.107 (0.006) 0.140 (0.010) 0.170 (0.008) 0.364 (0.041)

LNHINC -1 – -1 – -1 – -1 –

AGE 1.767 (0.207) 2.409 (0.306) 2.002 (0.270) 2.548 (0.967)

AGE2 -0.215 (0.028) -0.297 (0.040) -0.234 (0.037) -0.288 (0.130)

Constant -4.250 (0.352) -5.679 (0.535) -5.449 (0.445) -8.334 (1.828)

CHILD 0.385 (0.058)

YCHILD 0.162 (0.127)

N 3447 3447 3402 3447

-Log L 2399.016 2268.178
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Figure 1: Visualization of Design 1
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a Each row represents a variation of Design 1: (a) ρ = 0, and (b) ρ = 1/4 in descending order.
b First column from the left shows their joint densities, fV U (v, u). Middle column shows

their associated conditional densities, fV |U (v|U = u), and last column shows their marginal

distribution, fU (u), with respect to U , as well as that of a univariate truncated, [−3, 3],

normal with parameters: µu = 0, and σ2
u = 6.
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Figure 2: Visualization of Design 2
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a Each row represents a variation of Design 2: (a) ρ = 0, and (b) ρ = 1/4 in descending order.
b First column from the left shows their joint densities, fV U (v, u). Middle column shows

their associated conditional densities, fV |U (v|U = u), and last column shows their marginal

distribution, fU (u), with respect to U , as well as that of a univariate truncated, [−3, 3],

normal with parameters: µu = 1, and σ2
u = 6.
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Figure 3: Visualization of Design 3
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a Each row represents a variation of Design 3: (a) ρ = 0, and (b) ρ = 1/4 in descending order.
b First column from the left shows their joint densities, fV U (v, u). Middle column shows

their associated conditional densities, fV |U (v|U = u), and last column shows their marginal

distribution, fU (u), with respect to U , as well as that of a univariate truncated, [−3, 3],

normal with parameters: µu = 2, and σ2
u = 6.
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Figure 4: Simulated MSE of Design 1
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a Each row represents a variation of Design 1: (a) ρ = 0, and (b) ρ = 1/4 in descending order.
b Simulation based on 1000 replications. Dashed gray lines represent the optimal bandwidth

predicted by our results in each case.
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Figure 5: Simulated MSE of Design 2
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a Each row represents a variation of Design 2: (a) ρ = 0, and (b) ρ = 1/4 in descending order.
b Simulation based on 1000 replications. Dashed gray lines represent the optimal bandwidth

predicted by our results in each case.
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Figure 6: Simulated MSE of Design 3
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a Each row represents a variation of Design 3: (a) ρ = 0, and (b) ρ = 1/4 in descending order.
b Simulation based on 1000 replications. Dashed gray lines represent the optimal bandwidth

predicted by our results in each case.
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Figure 7: Estimated Contribution to MSE
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a Discrete regressors: CHILD, YCHILD and EDUC. Continuous regressors: LNHINC and

AGE.
b Bandwidth h∗ ≃ 0.99 was found by standard cross validation of the kernel estimator of fV X .

Similarly, h0 = 0.7 and ∆ = 2.
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